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Notes on metric spaces

§1 Introduction

The purpose of these notes is to quickly review some of the basic concepts
from Real Analysis, Metric Spaces and some related results that will be used
in this course.

§2 Convergence of real numbers

§2.1 Limits

Let xn ∈ R. We say that xn → x if for all ε > 0 there exists N ∈ N such
that if n ≥ N we have |xn − x| < ε for all n > N .

§2.2 Lim sup and lim inf

When we come to study ergodic theory, we will often have to check that
various sequences converge. It will often be most convenient to do this by
using lim sups and lim infs.

Definition. Let xn ∈ R be a sequence. Define

lim sup
n→∞

xn = lim
n→∞

(
sup
k≥n
{xk}

)
.

Remark. The lim sup always exists (although it may be ±∞). This is be-
cause supk≥n{xk} is a decreasing sequence (in n), and decreasing sequences
always converge.

Definition. Let xn ∈ R be a sequence. Define

lim inf
n→∞

xn = lim
n→∞

(
inf
k≥n
{xk}

)
.

Remark. For the same reason as above, the lim inf always exists but may
be equal to ±∞.

Proposition 2.1
Let xn be a sequence. Then xn → x if and only if lim supn→∞ xn =
lim infn→∞ xn = x.
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Remark. Thus in order to show that a sequence converges, we need only
show that both the lim sup and the lim inf agree. In fact, it is clear from
the definitions that lim infn→∞ xn ≤ lim supn→∞ xn. Hence to show that xn
converges, we need only show that lim supn→∞ xn ≤ lim infn→∞ xn.

Example. Take

xn = (−1)n + (−1)n
(

1
2n

)
.

Then lim supn→∞ xn = +1 and lim infn→∞ xn = −1.

§3 Metric spaces

§3.1 Metric spaces

Let X be a set. A function d : X ×X → [0,∞) is called a metric if

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

We call (X, d) a metric space.

Examples.

1. Take X = R and define d(x, y) = |x− y|.

2. Take X = R2 and define

d((x1, x2), (y1, y2)) = |y1 − x1|+ |y2 − x2|.

3. Take X = R2 and define

d((x1, x2), (y1, y2)) =
√
|y1 − x1|2 + |y2 − x2|2.

4. Consider the space

C([0, 1],R) = {f : [0, 1]→ R | f is continuous}.

Define
‖f‖∞ = sup

x∈[0,1]
|f(x)|.

(a standard result says that this supremum is finite.) Then we can
define a metric by

d(f, g) = ‖f − g‖∞.

5. More generally, if X is a compact (see below) metric space then the
space C(X,R) of continuous real-valued functions defined on X is a
metric space with metric d(f, g) = supx∈X |f(x)− g(x)|.

2



MATH41112/61112 Ergodic Theory Notes on Metric Spaces

§3.2 Convergence

Let (X, d) be a metric space. Let xn ∈ X be a sequence of points in X. We
say that xn converges to x ∈ X (and write xn → x) if for all ε > 0 there
exists N ∈ N such that for all n ≥ N we have d(xn, x) < ε.

A sequence xn is Cauchy if: for all ε > 0 there exists N ∈ N such that
for all n,m ≥ N we have d(xn, xm) ≤ ε.

A metric space (X, d) is said to be complete if every Cauchy sequence
converges. Examples of complete metric spaces include: R,R2 (with either
of the metrics above), C(X,R) where X is a compact metric space,. . .. The
set of all rationals Q is not complete: the sequence x1 = 1, x2 = 1.4, x3 =
1.41, x4 = 1.414, . . . , xn = decimal expansion of

√
2 to n decimal places is

Cauchy but does not converge in Q (because
√

2 is irrational).

§3.3 Open and closed sets

Let (X, d) be a metric space. Let x ∈ X and let ε > 0. The set

B(x, ε) = {y ∈ X | d(x, y) < ε}

of all points y that are distance at most ε from x is called the open ball of ra-
dius ε and centre x. We can think of B(x, ε) as being a small neighbourhood
around the point x.

A subset U ⊂ X is called open if for all x ∈ U there exists ε > 0 such
that B(x, ε) ⊂ U , i.e. every point x in U has a small neighbourhood that is
also contained in U .

One can easily show that open balls B(x, ε) are open subsets.
A set F is said to be closed if its complement X \ F is open. There are

other ways of defining closed sets:

Proposition 3.1
Let (X, d) be a metric space and let F ⊂ X. Then the following are equiv-
alent:

(i) F is closed (i.e. X \ F is open);

(ii) if xn ∈ F is a sequence of points in F such that xn → x for some
x ∈ X then x ∈ F (i.e. any convergent sequence of points in F has its
limit in F ).

§4 Compactness

We will usually study compact metric spaces. Roughly speaking, these are
spaces where sequences of points cannot ‘escape’.
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§4.1 Sequential compactness

Let (X, d) be a metric space. We say that X is sequentially compact if every
sequence xn ∈ X has a convergent subsequence, i.e. there exist nj →∞ such
that xnj → x for some x ∈ X.

Examples.

1. [0, 1] is compact.

2. (0, 1) is not compact (because xn = 1/n does not have a convergent
subsequence in (0, 1)).

3. C(X,R) is not compact.

§4.2 Compactness by open covers

Let (X, d) be a metric space. A collection of open sets U = {Uα | α ∈ A} is
called an open cover if

X =
⋃
α∈A

Uα.

We say that X is compact if every open cover of X has a finite subcover,
i.e. if U = {Uα | α ∈ A} is an open cover of X then there exists α1, . . . , αn
such that

X = Uα1 ∪ · · · ∪ Uαn .

Example. (0, 1) is not compact: the open cover {(1/(n + 2), 1/n)} does
not have a finite subcover.

The two notions of compactness are the same:

Proposition 4.1
Let (X, d) be a metric space. Then X is sequentially compact if and only if
it is compact.

§4.3 Properties of compact spaces

Proposition 4.2
Let X be compact. Then X is closed.

Proposition 4.3 (Heine-Borel)
A subset X ⊂ Rd is compact if and only if it is closed and bounded.

Remark. For subspaces of spaces other than Rd, this characterisation of
compactness fails. For example, there are closed and bounded subsets of
C([0, 1],R) that are not compact.
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§5 Continuity

§5.1 (ε, δ)-continuity

Definition. Let (X, d) be a metric space and let x ∈ X. A function
f : X → R is said to be continuous at x if for all ε > 0 there exists δ > 0
such that if d(x, y) < δ then |f(x)− f(y)|. We say that f is continuous if it
is continuous at every point x ∈ X.

Remark. More generally, we can easily modify this definition to define
what it means for a map f : X → Y between two metric spaces X and Y
to be continuous.

§5.2 Continuity by convergence of sequences

Let (X, d) be a metric space. We can give an alternative characterisation of
continuity in terms of how the images of convergent subsequences behave.

Proposition 5.1
The following are equivalent:

(i) f : X → R is continuous at x ∈ X,

(ii) for all convergent sequences xn ∈ X such that xn → x then f(xn) →
f(x).

Remark. Again, this definition can easily be extended to the case of a
continuous function f : X → Y between two arbitrary metric spaces.

§5.3 Continuity by preimages of open sets

Here is another characterisation of continuity in terms of open sets.

Proposition 5.2
Let X and Y be two metric spaces and let f : X → Y . The following are
equivalent:

(i) f is continuous

(ii) if U ⊂ Y is an open subset of Y then the set

f−1(U) = {x ∈ X | f(x) ∈ U}

is an open subset of X.
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§5.4 Continuity and compactness

Continuous functions defined on compact metric spaces enjoy various nice
properties and we describe some of them here.

Proposition 5.3 (Uniform continuity)
Let (X, dX) be a compact metric space and let (Y, dY ) be a metric space
(not necessarily compact). Let f : X → Y be continuous. Then f is
uniformly continuous: i.e. ∀ε > 0, ∃δ > 0 s.t. ∀x, y ∈ X, if dX(x, y) < ε then
dY (f(x), f(y)) < δ.

Remarks.

1. Recall that in the (ε, δ)-definition of continuity, given x ∈ X and ε > 0
we choose δ > 0 such that dX(x, y) < ε implies dY (f(x), f(y)) < δ.
The crucial point is that a priori δ depends on both ε and x. With
uniform continuity, the same δ will work for any x.

2. In particular, if T : X → X is a continuous transformation of a com-
pact metric space then T is uniformly continuous.

3. If f : X → R is a continuous real-valued function defined on a compact
metric space then it is uniformly continuous.

Proposition 5.4 (Continuous image of a compact set is compact)
Let (X, d) be a compact metric space and let f : X → Y be continuous.
Then f(X) ⊂ Y is a compact subset of Y .

Proposition 5.5 (Continuous functions are separable)
Let (X, d) be a compact metric space. Then the space

C(X,R) = {f : X → R | f is continuous}

is separable, i.e. there exists a countable dense set {fn}, i.e. ∀f ∈ C(X,R)
and ∀ε > 0, ∃n > 0 such that ‖f − fn‖∞ < ε

Proposition 5.6 (Stone-Weierstrass theorem)
Let (X, d) be a compact metric space and let A ⊂ C(X,R) be an algebra of
continuous functions defined on X, i.e.

(i) the zero function f(x) ≡ 0 ∈ A,

(ii) if f, g ∈ A and λ ∈ R then λf + g ∈ A,

(iii) if f, g ∈ A then the product function fg ∈ A.

Suppose that A separates the points of X and does not vanish at any point
of X, i.e.
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(i) for all x, y ∈ X with x 6= y there exists f ∈ A such that f(x) 6= f(y),

(ii) for all x ∈ X there is some f ∈ A for which f(x) 6= 0.

Then A is dense in C(X,R).

Remark. A similar result holds for C(X,C), provided one assumes that
if f ∈ A then f̄ ∈ A (where the bar denotes complex conjugation).

Examples.

1. Take X = [0, 1] and take A to be the algebra of all polynomials.
Clearly polynomials separate points and do not vanish at any point.
The Stone-Weierstrass theorem implies that any continuous function
can be arbitrarily well approximated by a polynomial.

2. Take X = R/Z and take A to be the algebra of all trigonometric
polynomials, i.e. A = {

∑
j αje

2πi`jx | αj ∈ C, `j ∈ Z}. Then A is an
algebra that separates points and does not vanish at any point. Hence
any continuous function f : R/Z → C defined on the circle can be
arbitrarily well approximated by a trigonometric polynomial.
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