20411 Online Resources (2017-2018)
Lecturer: Dr. Catherine Powell
Email: c_dot_powell_at_manchester_dot_ac_dot_uk
Office: 1.124, Alan Turing Building.
Office Hours: Monday 3-4pm, Tuesday 3-4pm.
At the above times, I am guaranteed to be in my office. Students may see me at those times to discuss MATH20411 without an appointment. If you want to meet me at another time, just send me an email to arrange it.
Announcements
The mid-term test has now taken place. Solutions can be found below.
After reading week, in weeks 7-12, the Monday lecture will be in Humanties Bridgeford Street building, in the Cordingley Lecture Theatre.
My feedback on your week 3 questionnarire comments is available HERE.
Syllabus
The course syllabus is available from the School of Mathematics web site.
Lectures and Examples Classes
- Lectures: Monday 12-1, Simon building Theatre E (in weeks 2-5 ONLY), Tuesday 12-1, Chemistry building, G.54.
- Examples Classes: Monday 1-2, Tuesday 1-2, Alan Turing Building G.107. Students should only attend the (ONE) class allocated to them.
Online Lecture Notes
I will post online lecture notes (roughly every two weeks) below, at the end of each section. These should be used to supplement your own notes taken in lectures. To actively engage with the material in the course, students must also take their own notes. Passively reading online notes is no substitute for actually doing mathematics.
Students who have special learning plans, as directed by the DSO, should contact me at the start of term to make any necessary arrangements.
Handouts
Additional material in the form of handouts, to read between lectures, will be made available online below.
Example Sheets
On average, there is one example sheet per week. However, questions are grouped according to topics. Therefore, the numbering of the examples sheets will not necessarily correspond to the week number. This is no reason to panic. Below, I will indicate which questions you should attempt in which weeks.
Some sheets will certainly have more questions than you will be able to do in one week, but these can be used for revision later. Example classes start in week 2. There will be many students in the examples class, so you will get the most benefit out of the class if you try the questions beforehand. You can then ask questions about the problems you are unable to do. You should attend one example class per week.
Numerical Analysis
The material in Section 5 on finite difference methods will give students their first taste of numerical analysis. This is a branch of applied mathematics with many important practical applications in the real world. For more details, and a list of other numerical analysis courses, see the Numerical Analysis undergraduate student pathway.
MATLAB
Students will be required to use MATLAB occasionally and should know how to set up vectors, perform mathematical operations on vectors, write simple programmes and plot functions. Demos will be given in examples classes throughout the term and examples given on handouts. Useful MATLAB resources and tutorials can be found on the web, including, HERE. An extensive range of MATLAB manuals are also available at the library.
A useful summary of basic commands is given here: MATLAB essentials
For certain lectures (e.g. the ones on finite difference methods in weeks 9 and 10) students will need the following MATLAB codes. Download the files and save to your P-drive. Open them in the MATLAB editor and read the instructions.
- fourierN_demo.m (illustrates convergence of a Fourier Series - example from Fourier Series notes)
- heateq_demo.m (plots the solution to the Heat Equation - example from Classical PDEs notes)
- trisolve.m (solves a tridiagonal system of equations)
- reac_diff_1d.m (implements centred finite differences for the reaction-diffusion problem)
- conv_diff_1d.m (implements centred finite differences for the convection-diffusion problem)
- heat_eq_explicit_fd.m (implements the explicit finite difference scheme for the heat equation)
- heat_eq_implicit_fd.m (implements the implicit finite difference scheme for the heat equation)
Textbooks
You do not need to buy any textbooks for this course . We will study several basic topics in calculus and applied mathematics, which are covered in hundreds of available texts in the library. However, the following books all contain some material you will meet in the course.
- James Stewart, Calculus, Early Transcendentals, Thomson, fifth edition (international student edition), 2003.
- (Useful for the first part of the course and vector calculus).
- R Haberman, Elementary Applied Partial Differential Equations with Fourier
Series and Boundary Value Problems, (Third edition) Prentice-Hall, 1998.
- (Useful for the section on Fourier Series and introduction to PDEs).
- Morton, K.W., Mayers, D.F, Numerical solution of partial differential equations, Cambridge University Press, 2005.
- (Useful for the sections of finite difference methods and numerical analysis).
- Schey, H. M. Div, Grad, Curl, and all that : an Informal Text on Vector Calculus, New York : W. W. Norton, various editions.
- (Useful for the final few weeks of the course when we tackle vector calculus).
Mid-Term Test
The mid-term test has now taken place. Solutions are available here . Marks will be posted on Blackboard soon and scripts will be returned in Examples Classes.
Exam Resources & Feedback
Tutorials will provide an opportunity for students' work to be discussed and provide feedback on their understanding. The coursework test also provides an opportunity for students to receive feedback. Students can also get feedback on their understanding directly from the lecturer, for example during the lecturer's office hour.
Past papers are available from the main School of Mathematics website (log in is required). Use the links on the left hand side of the page to access the 2015 and 2014 exam papers. For earlier exam papers, use the link to Past papers on the central University website. A sample exam paper is available HERE.
Solutions to exam papers are not provided. Solutions to examples sheets will help you revise.
The following documents provide feedback on general performance on past exam papers and common mistakes.