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We present the results of an experimental investigation of the motion of a light, solid
sphere in a horizontal rotating cylinder filled with viscous fluid. At high rotation rates,
the sphere sits near the axis of the cylinder. At lower rotation rates, a set of off-
axis fixed points are observed for a range of sphere radii. The locations of these
fixed points are in quantitative agreement with the predictions of a model based on
available theory. The fixed points are observed to become unstable to periodic orbits
below a critical Reynolds number Rec. The radius of the observed orbits increases with
Reynolds number more slowly than a typical Hopf bifurcation, in this case, growing
as 1/Re2.
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1. Introduction
The general problem of motion of a light spherical particle in a rotating flow has

received considerable attention since the seminal work of Thomson (1873) on inviscid
irrotational flows. Kelvin considered a small sphere placed in an irrotational rotating
flow and predicted that the sphere will be attracted to the centre of the flow by a force
which is inversely proportional to the cube of the distance from the axis of rotation.

A review of the forces involved in the motion of bubbles and rigid particles in
unbounded domains at low to moderate Reynolds numbers is provided by Magnaudet
(1997). Lee & Ladd (2005) use Stokesian dynamics to calculate the motion of
an infinitesimally small particle in a cylinder rotating around its axis which is
perpendicular to gravity. They find that the circular orbit of a particle denser than the
fluid and moving with it in solid-body rotation is perturbed by outward centrifugal
forces, leading to spiral trajectories that are eventually confined by the cylinder wall.
The centrifugal force term used by Lee & Ladd (2005) is valid only when the motion
of the sphere through the surrounding fluid is much smaller than the speed of the
particle, and thus their calculations of equilibrium position are difficult to justify in
a physical realisation.

† Email address for correspondence: tom.mullin@maths.ox.ac.uk
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Lift in low Reynolds number flows was first studied theoretically by Saffman (1965)
and is known to be responsible for the lateral migration spheres in Poiseuille flow as
reviewed by Leal (1980). The magnitude of the lift is proportional to the square of
the radius of the sphere a. Experimental work conducted by Van Nierop et al. (2007)
concerns the motion of bubbles in a flow rotating about a horizontal axis for Reynolds
number 0.01 < Re < 500. For a bubble of radius a moving at speed v through the
surrounding fluid of kinematic viscosity ν, they find that at low Reynolds numbers,
av/ν < 10, the lift coefficient is always negative, i.e. the lift force on the bubble is
centripetal, directed towards the axis of rotation. This contrasts with higher Reynolds
numbers where the lift force on the bubble is directed outwards.

The results of a study of the motion of heavy spheres with density ratios between
1.15 and 8.14 in a vertical rotating cylindrical container are reported by Karanfilian &
Kotas (1981). They explored a range of Re between 0.035 and 3365, and found that
for Re< 1 the lift coefficient is always negative, in accord with the discussion in the
previous paragraph.

Other experimental work conducted in a horizontal rotating cylinder filled with a
viscous fluid focused on the motion of a single heavy sphere and the interaction
between two and three spheres (Mullin et al. 2005). Mullin et al. find a fixed point
regime where the sphere is balanced next to the wall, and a dynamical cascading
regime, in which the sphere describes asymmetric orbits for Re > 1.21. The motion
at the fixed points adjacent to the wall is studied in detail by Ashmore, Del Pino
& Mullin (2005) who show that cavitation is an essential component of the force
balance. Yang et al. (2006) studied the effects of roughness in the interactions with
the wall. The dynamical motion, including chaos, was subsequently studied in detail
by Davidheiser et al. (2010). When many particles are added to a rotating cylinder of
viscous fluid, axial segregation and pattern formation can occur (see Seiden & Thomas
2011, and references therein).

The results of numerical investigations of the pedalling motion of pairs of spheres
in a horizontal rotating cylinder of viscous fluid are reported by Mukundakrishnan, Hu
& Ayyaswamy (2008). They use direct numerical simulations of the incompressible
Navier–Stokes equations on a finite-length horizontal rotating cylinder with
1 < Re < 60. The majority of their study is concerned with the dynamics of two
particles but they also find that a single light particle has a stable fixed point, which
is in accord with the theory of Coimbra & Kobayashi (2002).

Horizontal rotating cylinders of viscous fluid are used widely in biotechnology in
applications related to tissue growth engineering. An example of this is provided
by a bioreactor, where tissue can be grown in a reduced gravity environment when
placed inside a rotating cylinder filled with fluid (Gao, Ayyaswamy & Ducheyne
1996). The tissue is in the form of a near-spherical porous scaffold. It is less dense
than the fluid and at a given rotation rate it is observed to sit at a fixed point which
is displaced from the axis of rotation. This has practical advantages as collision
between the delicate tissue and the walls of the bio-reactor can be avoided. The
understanding of the dynamics of a single particle in a horizontal rotating cylinder
also aids understanding of the behaviour of colloidal suspensions, specifically as a
model of the manufacturing process of precision latex micro-spheres through the use
of a rotating latex reactor as discussed by Roberts, Kornfeld & Fowlis (1991).

The focus of our investigation is on the fixed points for a light rigid sphere in a
horizontal rotating cylinder at low Reynolds number. These fixed point observations
are in good accord with a theory that we develop from the lift force expression of
Gotoh (1990). We observe that a particle at a fixed point near to the centre of the
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O

FIGURE 1. (Colour online) Schematic of an end view of the flow domain. A cylinder of
fluid (outer circle) rotates about its axis O at angular velocity Ω , and a buoyant particle
of radius a (inner filled circle) is held at an equilibrium position by a balance of Stokes
drag FD, centripetal forces FC, buoyancy FB and lift FL.

cylinder becomes unstable to periodic motion as the rotation rate is reduced and the
sphere approaches the wall of the cylinder. The growth rate of the oscillations is
unusual as it is found to be slower than for a standard Hopf bifurcation.

The structure of the paper is as follows. In § 2 we evaluate the time-dependent
forces acting on the sphere and derive an expression for the equilibrium positions.
The experiment is described in § 3, followed by the experimental results in § 4 where
a comparison with the results of our model is made. We draw some conclusions
in § 5.

2. Equilibrium position of a sphere in a rotating viscous flow
In this section, a model is described for the motion of a buoyant sphere within a

cylinder rotating about its axis, which is perpendicular to gravity. This model follows
the results of Candelier (2008), who derived the history-dependent forces on a sphere
in an unbounded rotating flow at low Reynolds number, and showed that these forces
correspond to the lift and drag corrections predicted by Gotoh (1990) when the sphere
is in equilibrium.

The cylinder rotates with angular velocity Ω , and is filled with viscous fluid of
density ρf and dynamic viscosity µ (figure 1). A buoyant spherical particle of radius
a and density ρs is immersed in a fluid, and we assume that this sphere is small, and
sufficiently far from the walls of the cylinder that hydrodynamic interactions between
the particle and the walls of the cylinder can be neglected. Defining a radial coordinate
system centred at the axis of the cylinder, with unit azimuthal and radial basis vectors
er and eθ , the velocity field in the absence of the sphere is solid-body rotation, u=
rΩeθ . The location of the centre of the sphere is denoted by x, with radial coordinates
(r, θ) and Cartesian coordinates (x, y) and the acceleration arising from gravity by
g=−g(eθ cos θ + er sin θ). The system has three independent dimensionless groups: the
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density ratio ρs/ρf (which takes the value 0.69 in our experiments), and two Reynolds
numbers, based on rotation rate and the settling velocity,

Re=
ρf a2Ω

µ
and Rep =

ρf VTa
µ

, (2.1a,b)

where

VT =
2ga2(ρf − ρs)

9µ
(2.2)

is the rising speed of the (buoyant) sphere in quiescent fluid. The quantity Re, as
defined in (2.1), is often known as the Taylor number (e.g. Childress 1964).

The equation of motion for the sphere is

mp
d2x
dt2
=mpg+

∮
dV
σ · n dS, (2.3)

where mp= (4/3)πa3ρs is the mass of the spherical particle, dV represents the particle
surface, n is a unit outward normal and σ is the Cauchy stress in the fluid. At
infinitesimal Reynolds number, the contributions to this stress integral for a spherical
particle in an unbounded domain can be described by the history, buoyancy, drag,
centrifugal and added mass forces (Maxey & Riley 1983). Away from the Stokes
flow limit, Magnaudet (1997) reviews the forces and inertial corrections occurring at
low to moderate Reynolds numbers, when the particle is also subject to a lift force.
We now evaluate the contribution from each of these forces.

The buoyancy and Stokes drag forces are given by

FB =−
4
3πa3ρf g (2.4)

and
FD = 6πµarΩeθ , (2.5)

respectively (see e.g. Batchelor 1967; Maxey & Riley 1983). If all inertial and
acceleration forces can be neglected (namely when Re→ 0, Rep→ 0, Ω2R/g→ 0),
then the stress on the sphere results from these two forces alone. In this limit, the
radial force balance implies that any equilibrium must lie at the same vertical position
as the origin.

The fluid acceleration generated by the rotation of the cylinder results in a radial
pressure gradient, and a consequent inward-pointing radial force on the particle, given
by

FC =−
4
3πa3Ω2rρf er. (2.6)

When a spherical particle in an unbounded parallel shear flow is subjected
to a force, it experiences an additional lift force in the perpendicular direction
(Segré & Silberberg 1962), which cannot be explained by viscous stresses alone
(Bretherton 1962). For a spherical particle in a shear flow (where a Reynolds number
Res = ρf a2γ̇ /µ is defined from the shear rate γ̇ ), Saffman (1965) calculated the
strength of this lift force in the low Reynolds number regime Rep � Re1/2

s � 1,
showing that it scales with Re1/2

s .
Saffman’s calculation of the lift force was subsequently extended by McLaughlin

(1991) to the regime in which both Reynolds numbers are much less than one,
but where Rep is not necessarily small compared to Re1/2

s . Numerical calculation
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A light sphere in a rotating viscous fluid 123

(Dandy & Dwyer 1990) indicates that the expression of Saffman (1965), formally
valid only in the asymptotic regime Rep � Re1/2

s � 1, is nonetheless accurate if
Rep < Re1/2

s < 1 (Mei 1992).
In the case relevant to our problem, where the background flow is in solid-body

rotation rather than parallel shear, Gotoh (1990) calculated the leading-order effects of
inertia using a similar analysis to that of Saffman (1965). At small Reynolds number
(when Rep�Re1/2

�1) and for a particle at rest, Gotoh (1990) shows that the leading-
order contribution of inertia is at O(Re1/2), and takes the form

FL = 6πµarΩRe1/2
[k1eθ − k2er], (2.7)

where

k1 = 3

√
2(19+ 9

√
3)

280
≈ 0.524 and k2 = 3

√
2(19− 9

√
3)

280
≈ 0.0517. (2.8a,b)

This expression is valid only for particles that are stationary in the laboratory frame
(that is, particles that may be rotating, but for which dx/dt = 0). The finite-Re
adjustment (2.7) comprises both a radial lift component analogous to that found by
Saffman (1965) and an azimuthal component, corresponding to a modification of the
Stokes drag law at small finite Reynolds number. We note that the mechanisms of
lift and drag studied by Gotoh (1990) differ significantly from those that occur at
high Reynolds number (Rastello et al. 2009; Bluemink et al. 2010). At low Reynolds
number, the lift force on a sphere in a rotating flow is directed inwards, towards
the centre of rotation (Gotoh 1990). Surprisingly, this is the opposite direction to the
lift force in a low Reynolds number simple shear flow of the same vorticity. The
explanation for this difference, given by Van Nierop et al. (2007), is that a sphere
in a rotating base flow experiences two lift forces: an outward-directed force similar
to the one occurring in simple shear flows (Saffman 1965), and an inward-directed
force, slightly larger in magnitude, resulting from curvature of the sphere wake.

Candelier (2008) showed that the steady lift and drag corrections obtained by
Gotoh (1990) in fact arise as a special case of the time-dependent history force on
the particle, in the case where the particle is stationary. This history force is not
restricted to steady states, but describes the forces on a particle moving arbitrarily
when Rep�Re1/2

� 1; for example, the lift and drag in the ‘centrifuging’ regime first
calculated by Herron, Davis & Bretherton (1975) and the Basset–Boussinesq–Oseen
force (Basset 1888) are also captured by the history force of Candelier (2008) in the
appropriate regimes of particle motion. The expression for this history force is

FH =−6πµa
√

Re
(∫ t

−∞

K1 (Ω(t− τ)) ·
dvs

dt
dτ +

∫ t

−∞

K2 (Ω(t− τ)) · vs(τ ) dτ
)
,

(2.9)
where vs = dx/dt− u(x) is the slip velocity,

K1(t)=
(

f1(t) −g1(t)
g1(t) f1(t)

)
· P(t), K2(t)=Ω

(
g1(t)+ f2(t) f1(t)− g2(t)
−f1(t)+ g2(t) g1(t)+ f2(t)

)
· P(t),

(2.10a,b)

P(t)=
(

cos(t) −sin(t)
sin(t) cos(t)

)
, f2(t)=

10
7

sin(2t)
√

πt
, g2(t)=

6
5

cos(2t)
√

πt
, (2.11a−c)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

33
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

he
 U

ni
ve

rs
ity

 o
f M

an
ch

es
te

r 
Li

br
ar

y,
 o

n 
24

 M
ay

 2
01

8 
at

 1
2:

53
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.330
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


124 T. Sauma-Pérez, C. G. Johnson, L. Yang and T. Mullin

f1(t) =
1

112

(
80 cos(2t)t3

+ 20 sin(2t)t2
+ 6 cos(2t)t− 3 sin(2t)

t2
√

πt

)
, (2.12)

g1(t) = −
3
40

(
8 sin(2t)t2

− 2 cos(2t)t+ sin(2t)
t3
√

πt

)
. (2.13)

With the contributions to the surface integral in (2.3) calculated in (2.4), (2.5), (2.6)
and (2.9), the equation of motion (2.3) then reads

mp
d2x
dt2
=mpg+FB +FC +FD +FH. (2.14)

We integrate (2.14) in time numerically using a second-order implicit backward
differentiation formula (BDF2). The integrals in (2.9) are evaluated using a second-
order trapezoidal rule, modified to account for the 1/

√
t singularity in the integrand.

Since the history forces (2.9) involve the complete history of motion of the sphere,
we must specify this motion; here we assume that the sphere is at rest for t< 0, and
starts to move at t = 0 when integration of the governing equations begins. We use
the result that the history force reduces to the lift force of Gotoh (1990) for a sphere
at rest (i.e. FH(t′)=FL(t′) if dx/dt= 0 for all t 6 t′) to calculate this history integral
exactly for t < 0, and thus avoid numerical error due to truncation of the integral
domain.

We use this time-dependent theory to study the existence and stability of equilibrium
points. For a sphere in stationary equilibrium (2.14) reads

mpg+FB +FC +FD +FL = 0 (2.15)

(since FH reduces to FL for a stationary sphere), with azimuthal and radial
components

cos θ = −
Re
Rep

(1+ k1Re1/2)
r
a

and (2.16)

sin θ =
Ω2r

g
+ k2Re1/2Ωr

VT
=

Re3/2

Rep

[
1
3

√
Re+ k2

]
r
a
. (2.17)

Solving for r and θ , we find the equilibrium position of the sphere to be

x = r cos θ =−a
Rep

Re
1+ k1Re1/2

(1+ k1Re1/2)2 + Re
(
k2 +

1
3 Re1/2

)2 , (2.18)

y = r sin θ = a
Rep

Re1/2

1
3 Re1/2

+ k2

(1+ k1Re1/2)2 + Re(k2 +
1
3 Re1/2)2

. (2.19)

Since y> 0, the equilibrium position for a buoyant sphere lies above the origin. This
arises from the requirement that the radial component of the buoyancy force FB is
directed outwards, to balance the inward-directed lift and centrifugal forces. This
differs from the prediction y < 0 obtained from models where rotating background
flow is approximated as a simple shear flow, where the Saffman (1965) expression
for the perpendicular component of lift is used (e.g. Coimbra & Kobayashi 2002;
Ramirez et al. 2003). We note that the vertical displacement of the equilibrium
position is much smaller than the horizontal displacement (by an order of Re1/2), and
so the equilibrium points lie close to the horizontal diameter of the cylinder on a
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Cylinder
Shaft

encoder

Gear
box

Motor

FIGURE 2. (Colour online) Schematic diagram of the experiment. A glass cylinder was
mounted horizontally between bearings and completely filled with glycerol. A light sphere
was placed inside it and the cylinder was rotated around its axis using a motor, a gear
box and a smooth belt. A shaft encoder was used to measure the frequency of rotation
of the cylinder.

radius, which for our experimental parameters is .3◦ above the central plane. The
stability of these equilibrium points is discussed in § 4.

3. Experiment
3.1. Experimental set-up and procedure

A schematic diagram of the apparatus is given in figure 2. The apparatus comprised
a precision-bored rig glass cylindrical drum of length 225.000 ± 0.005 mm, inner
diameter 120.000 ± 0.005 mm and with a wall thickness of 5.200 ± 0.005 mm.
The cylinder was completely filled with glycerol of density ρg = 1.261 g cm−3 and
viscosity ν = 1100 ± 0.3 mm2 s−1 (measured using an Ubbelohde suspended level
viscometer). The experiments were performed in a temperature controlled room with
a measured air temperature of 20± 0.5 ◦C. This gave rise to an estimated temperature
variation of ±0.2 ◦C in the glycerol.

The spheres used were polypropylene, of density ρs = 0.87 ± 0.02 g cm−3 and
radius a= 3.15, 4.76, 6.32, 7.05, 7.90, 9.50 mm (±0.005 mm).

The cylinder was mounted on bearings on a machined steel platform with three
adjustable legs, which were used to level the cylinder using an engineer’s spirit level.
Careful levelling of the system was required in order to minimise buoyancy-induced
drift of the sphere along the axis of the cylinder. The cylinder was rotated using a DC
motor with feedback control via a 10:1 gear box, which was connected to the cylinder
by a smooth belt. The speed of rotation was controlled by a commercial servo control
and the rotation frequency was measured using an optical encoder, attached to the
shaft of the motor, which produced 500 pulses per revolution. The pulse count was
monitored using a universal counter and this was used to calibrate the rotation rate of
the cylinder.
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The angular velocity of the cylinder, Ω = 2πf , was measured by the encoder to
an accuracy of 0.01 %. The maximum angular velocity used in this experiment was
Ω ≈ 25 rad s−1 giving a maximum Reynolds number Re = a2Ω/ν ≈ 2 for the
largest sphere. However, the majority of the experiments were performed with
0.05< Re< 0.7.

The inside of the cylinder was polished and ground, as was a 1 cm band on the
outside at the ends. The end caps were machined together to ensure that, when
mounted, any misalignment of the ends was minimal. The excellent agreement
between the experimental results and the theory for the fixed points suggests that any
secondary flows were weak.

Two time scales were considered when taking into account how long it would take
the fluid to achieve solid-body rotation after the rotational velocity were modified. As
described by Greenspan & Howard (1963), the viscous diffusion time is Td =R2/µ≈
3.2 s, and the spin-up time is Ts = R/

√
µ∆Ω ≈ 1.8 s, for a change in rotation rate

∆Ω . After a change of rotation rate, we waited a time much longer than Td and Ts
(at least two minutes) before making any measurements, to ensure that any transients
had decayed and the fluid inside the cylinder was in solid-body rotation.

When the cylinder was filled with glycerol, air also entered the fluid creating
bubbles. The presence of an air bubble of comparable size to the sphere produced
unwanted complications in the dynamics, analogous to those found when there is
more than one spherical particle in the flow; see Mullin et al. (2005). Hence, before
each set of experiments, bubbles were removed by first rotating the cylinder at high
speed so that the bubbles merged on the axis of the cylinder. The larger bubble
which formed was removed by injecting degassed fluid into one of two sealable holes
drilled into the end plate of the cylinder.

The cylinder was front-illuminated using two light sources, and the back lid of the
cylinder was painted white to improve the contrast between the background and the
dark green polypropylene sphere. Images were taken using a fast digital camera (Sony
XCD-X710) and the position of the sphere was determined by a dedicated image
analysis MATLAB routine. The contrast between the sphere and the white background
was used to identify the position of the centre of the sphere.

4. Results
4.1. Fixed points

At the highest Reynolds numbers examined, Re ≈ 2, the sphere rotated on its axis
about an equilibrium position close to the centre of the cylinder. As Re was decreased,
the sphere adopted new equilibrium positions away from the centre of the cylinder,
as shown in figure 3. The sphere spun on its axis at each of the equilibrium positions
with a dimensionless rotation frequency ωr/Ω ≈ 1, as expected from the torque
balance on a sphere in a rotating flow (Gotoh 1990). Below a critical Reynolds
number the sphere no longer stayed at a steady equilibrium point, but described a
circular orbit.

The equilibrium positions were measured for each diameter of sphere and the
horizontal distance of this equilibrium from the cylinder axis, x, is plotted as a
function of Re as figure 4. Open markers with vertical bars indicate spheres on a
circular orbit, and in this case the marker denotes the position of the centre of the
orbit and the height of the bar indicates the standard deviation from the average
position, a measure of the amplitude of the oscillation. These positions have been
normalised by Repa, and under this scaling the theory (2.18), plotted as a solid
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(a) (b) (c)

g

FIGURE 3. (Colour online) Sphere of radius a=7.90 mm (false-colour shaded red, online)
at different Reynolds numbers. The rotational axis of the drum is marked by a dotted
line and a cross where this axis meets the far wall of the drum. As Re decreases, the
horizontal displacement of sphere equilibrium position from this axis, x, moves further
from the cylinder axis. (a) Re= 1.990, x≈ 0 mm; (b) Re= 0.792, x= 1.8 mm; (c) Re=
0.332, x= 6.25 mm.

10

20

30

0 0.25 0.50 0.75 1.00

4.75 mm
6.32 mm
7.05 mm
7.90 mm
9.50 mm

Re

FIGURE 4. (Colour online) Horizontal displacement of the sphere as a function of
Reynolds number for spheres of radii a = 9.5, 7.9, 7.05, 6.33, 4.78 mm. Open circles
denote the centre of an orbit; filled circles indicate stationary fixed points. Each data point
corresponds to the distance between the central axis of the cylinder and the centre of the
sphere, averaged over 2 s (60 frames). The continuous line is the theoretical prediction
for this horizontal displacement, from § 2.

curve, predicts a collapse of the experimental measurements. There is generally
good agreement between theoretical prediction and experimental measurement of the
horizontal displacement of the equilibrium point, both in the dependence on Re and
the collapse with respect to Repa. The displacement in the vertical direction y is much
smaller than the horizontal displacement, as predicted theoretically (2.19), but this
vertical displacement is below the limits of resolution of the experiment. Although
we are unable to give precise estimates for the location of the centre of the sphere
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we are confident that the centre was always above the central plane of the cylinder
for all fixed points in accord with theory.

For a wide range of parameters, including the values relevant to our experiments,
numerical integration of the time-dependent model (2.14) indicates that these fixed
points are stable: no orbits are predicted. This was ascertained by solving for the
motion of spheres that were initially displaced from their equilibrium position. Up
to a scaling factor, the trajectory obtained is independent of the size of the initial
displacement of the sphere, since the model is linear in particle position and velocity.
After an initial transient of duration ∼1/Ω arising from the history force, the spheres
are predicted to spiral towards the equilibrium point, with the distance from this
point decaying exponentially in time. The mechanism driving this stable attraction
to the fixed point is simply the centrifugal pressure gradient in the fluid, with the
rate of approach to the fixed point modified only slightly by the history force. This
behaviour is consistent with the trajectories for buoyant particles plotted in figure 5
of Candelier (2008) (which are qualitatively similar to the trajectories we obtain for
our experimental parameter values), in that the rate of approach to the fixed point
differs only slightly in different formulations of the history force.

4.2. Oscillations
As noted in figure 4, below a critical Re the spheres were observed to trace an
orbit, centred around the equilibrium position predicted by the theory of § 2. This is
contrary to the theoretical predictions of a stable equilibrium without a limit cycle:
this discrepancy will be discussed later. The paths of these orbits for a= 7.9 mm are
shown in figure 6(a) for a range of Re. Solid lines in this figure correspond to the
least-squares fits of circles to the data; these circles were used to estimate the centre
and radius of each orbit.

The radius of each orbit is plotted as a function of Re in figure 7. For all sphere
sizes the orbit radius increased, as did the distance between the orbit centre and the
cylinder axis, as Re decreased. The critical distance and Reynolds number at which the
oscillation started was estimated by measuring the radius of the orbit. When the radius
was smaller than 5 % of the radius of the sphere, approximately the smallest orbit that
could be observed clearly, the sphere was deemed to be on a fixed point. We have
chosen the critical point in this way as it enables a measure which compares the onset
of the oscillations between all spheres. We observe that the sphere becomes unstable
to periodic orbits when its equilibrium point is greater than ≈ 0.7 of the sphere radius,
for a range of sphere sizes (figure 5). This corresponds to smaller spheres becoming
unstable at smaller values of the critical Reynolds number Rec.

In many fluid mechanics problems the onset of a simple oscillation is well described
as a Hopf bifurcation in which R ∼ |Re − Rec|

1/2 where Rec is the critical value of
Re at the bifurcation point. Examples include flow past a cylinder (Sreenivasan,
Strykowski & Olinger 1987), Taylor–Couette flow (Pfister & Gerdts 1981) and
Rayleigh–Bénard convection (Ecke, Zhong & Knobloch 1992). Indeed in a study of
the closely related problem of the motion of heavy spheres in a rotating horizontal
cylinder of viscous fluid (Mullin et al. 2005), the characteristics of a simple Hopf
bifurcation are also found. In the present case, when the light sphere is away from
the wall the growth of the radius of the oscillation radius with decreasing Re is well
fitted by R∼ Re−2, as demonstrated by the line of gradient −2 in figure 7.

As Re decreases, the increase of both orbit radius and displacement of the orbit
centre from the cylinder axis means that the influence of the cylinder wall becomes
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FIGURE 5. (Colour online) Non-dimensional horizontal displacement of the sphere at the
onset of instability, xc/a, as a function of sphere radius a.
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FIGURE 6. (Colour online) Orbits of a sphere with a= 7.9 mm at various fixed values
of Re. Symbols are observed sphere positions, and the solid line corresponds to a circular
fit for each orbit.

dominant for sufficiently small Re. When Re was . 0.01 the sphere sat at a series of
fixed points adjacent to the descending wall. When Re was increased above ≈ 0.01 the
sphere began to oscillate adjacent to the wall. Typical examples of orbits near onset
can be seen in figure 8 for a 12.5 mm sphere at Re= 0.012. The orbit is elliptical and
the motion is localised adjacent to the cylinder wall. The radius of this oscillation was
proportional to the R∼ |Re− Rec|

1/2 in accord with a standard Hopf bifurcation and
the results of Mullin et al. (2005) for heavy spheres. It can also be seen in figure 8
that the orbit became more circular as Re was increased and approaching the small
near-perfect circular orbits close to the cylinder axis (figure 6).

The frequency of the orbit was measured and its non-dimensional form is shown
in figure 9, plotted as a function of Re. The frequency ratio of the sphere to the
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4.76 mm
6.33 mm
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7.90 mm
9.50 mm
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100
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10–2

10010–1

Re

FIGURE 7. (Colour online) Non-dimensional orbit radius R/a, plotted against Re. The
grey dashed line denotes the threshold below which a sphere is assumed to lie on its
equilibrium point.

cylinder is close to two when the sphere is near the wall and rapidly approaches one
as the sphere moved towards the centre of the cylinder when Re was increased. As
noted above, the orbit became more circular and was centred on the unstable fixed
point.

5. Discussion and conclusions
We have investigated the motion of a light sphere immersed in a rotating viscous

flow at low Reynolds numbers. Our experimental results show a set of stable fixed
points which are eccentric to the axis of the cylinder over a range of Re. The balance
of forces required for stability is explained using the buoyancy force arguments of
Gotoh (1990), Magnaudet (1997) and Candelier (2008). We present results of a
model for the equilibrium position of the sphere, based on these arguments, and the
predictions of the equilibrium points are in excellent accord with the experiments.

We also found experimentally that these equilibrium positions become unstable to
oscillatory motion below a critical value Rec and the sphere follows circular orbits.
The centre of the orbit is located on the fixed point predicted by the theory, but the
existence of a stable orbit is not predicted by the theory, which instead predicts a
stable fixed point. As Re decreases, the radius of the experimentally observed orbit
scales initially as Re−2, which is slower than the growth following a typical Hopf
bifurcation.

Two clear possibilities exist for the difference between the stability predictions of
the theory and the experimental observations. Firstly, the effect of the outer walls of
the drum are neglected in the theory, but become significant in the experiments as
Re is decreased and the predicted equilibrium position moves away from the axis
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FIGURE 8. (Colour online) Plot of the orbits of a 12.5 mm sphere at the various given
values of Re, illustrating the behaviour of the orbits as they approach the side wall of the
drum (solid black circle).

of rotation towards the drum wall. At these lower values of Re, the experimentally
observed orbits become elliptical and decrease in size, until the sphere restabilises at
a stable equilibrium point adjacent to the cylinder wall. This change in stability occurs
via a standard Hopf bifurcation, as reported previously for heavy spheres (Mullin et al.
2005). It is possible that the orbits we observe are caused by wall effects destabilising
even the fixed points very close to the axis of rotation. To test this, experiments
were performed in which a 100 mm long Plexiglas cylinder of radius 3 mm glued
to the inner wall of the cylinder. No change to the orbits was observed, even with
this large perturbation, suggesting that wall effects (and indeed any small geometrical
imperfections in the experiment) are not the cause of the observed orbits.

Secondly, the theory is formally valid only in the asymptotic limit Rep�Re1/2
� 1.

In our experiments, Re1/2 < 1 is satisfied always, and Rep < Re1/2 is satisfied for all
but three measurements of the spheres of 9.5 mm radius. We observe orbits only for
smaller values of Re, which suggests that while Re1/2

� 1 may be satisfied, finite-Rep

effect not included in the model may act to destabilise the equilibrium points as Rep

approaches Re1/2.
Notably, the observed dependence of orbit radius on Re is not the standard

R ∼ |Re − Rec|
1/2 expected of a Hopf bifurcation, and further work is required

to explain the mechanism of instability and the origins of this behaviour. A full
numerical simulation of the system may shed light on these issues, but it remains a
challenging problem to resolve, in three dimensions, the subtle balance of stabilising
and destabilising forces acting on the sphere at finite Reynolds number.
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FIGURE 9. Graph of the frequency of oscillation of spheres in the diameter range
9.5–25.0 mm plotted as a function of Re. The frequencies have been made dimensionless
using the rotation frequency of the cylinder.
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