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Entraining gravity currents
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Entrainment of ambient fluid into a gravity current, while often negligible in
laboratory-scale flows, may become increasingly significant in large-scale natural flows.
We present a theoretical study of the effect of this entrainment by augmenting a
shallow water model for gravity currents under a deep ambient with a simple empirical
model for entrainment, based on experimental measurements of the fluid entrainment
rate as a function of the bulk Richardson number. By analysing long-time similarity
solutions of the model, we find that the decrease in entrainment coefficient at large
Richardson number, due to the suppression of turbulent mixing by stable stratification,
qualitatively affects the structure and growth rate of the solutions, compared to
currents in which the entrainment is taken to be constant or negligible. In particular,
mixing is most significant close to the front of the currents, leading to flows that are
more dilute, deeper and slower than their non-entraining counterparts. The long-time
solution of an inviscid entraining gravity current generated by a lock-release of dense
fluid is a similarity solution of the second kind, in which the current grows as a power
of time that is dependent on the form of the entrainment law. With an entrainment law
that fits the experimental measurements well, the length of currents in this entraining
inviscid regime grows with time approximately as t0.447. For currents instigated by a
constant buoyancy flux, a different solution structure exists in which the current length
grows as t4/5. In both cases, entrainment is most significant close to the current front.
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1. Introduction
Gravity currents – the predominantly horizontal spreading of a dense fluid in a

relatively buoyant ambient due to gravity – occur frequently and at very large scales
in the atmosphere and oceans. They may be entirely natural phenomena, such as
sea-breeze fronts, estuarine currents or pyroclastic flows, or they may occur due to
human activity, such as when a dense or buoyant industrial effluent is pumped into
a river or ocean (Simpson 1999). While high Reynolds number gravity currents are a
fundamental component of environmental flows, their turbulent nature means that the
modelling and understanding of these currents remains an active topic of research.

The extent to which a gravity current is diluted, through mixing of the current
with surrounding ambient fluid, is of particular interest in currents generated by the
release of industrial effluents or pollutants. Such mixing also affects the dynamics of
gravity current propagation through the reduction of the density difference that drives
the current and the associated increase in height of the flowing layer, and through
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the effective drag caused by entrainment of otherwise quiescent ambient fluid. In
large-scale gravity currents, the Péclet numbers, which measure the ratio of advective
transport to thermal or solute diffusion, are typically extremely large. As a result,
effective dilution of a gravity current driven by a density difference due to temperature
or dissolved solute can only be achieved through turbulent mixing processes, which
transfer the large-scale motion of the gravity current to the small scales at which
diffusive mixing operates.

The rate of entrainment of ambient fluid into a flow due to turbulent processes
is often modelled as proportional to the difference in velocity between the current
and the ambient flow, by dimensional arguments (Morton, Taylor & Turner 1956;
Turner 1986). The coefficient of proportionality E is, in general, a function of all
the dimensionless groups of the flow, including the density ratio of the current, the
Reynolds number and the Péclet number. A typical (but not universal) regime for
environmental flows is one in which the density ratio is small (Boussinesq flows),
and the Reynolds and Péclet numbers are very large. This leads to a value of E
dependent primarily on only one parameter, the Richardson number, which represents
the ratio of the stabilizing stratification of the current to destabilizing velocity shear
(Turner 1973). Ellison & Turner (1959) determined, from measurements of quasi-
steady gravity currents flowing down an incline, that E(Ri) tends to the constant
0.075 as the Richardson number tends to zero, and decays with increasing Richardson
number. The currents studied by Ellison & Turner (1959) were of fixed length, flowing
from a continuous source of dense fluid into a pool of mixed dense and ambient fluid.
When a gravity current is instead led by an advancing flow front, entrainment into
the ‘head’ at the front of the current becomes important, and has been the subject of
several experimental studies. Britter and Simpson (Britter & Simpson 1978; Simpson
& Britter 1979) used a tank with a flowing ambient and moving floor to bring to rest a
gravity current flowing over a horizontal surface, and studied the steady-state transport
and mixing of fluid through the current head. Hacker, Linden & Dalziel (1996) used
optical measurements of the currents and Hallworth et al. (1996) used an acid/base
neutralization technique to determine further the interactions between the entraining
flow head and the following current. Hallworth et al. (1996) calculated a value for
the coefficient of entrainment into the head of a gravity current flowing over a solid
horizontal surface of E = 0.063, similar to the coefficient obtained by Ellison & Turner
(1959) for low Richardson number flows.

In this paper, we develop a shallow water model for gravity currents with
entrainment that includes the effect of entrainment on the current dynamics and
shows that entrainment predominantly occurs in a region close to the front of
the current. This feedback of entrainment and dilution on the flow dynamics has
previously been studied for currents on an incline, where entrainment occurs readily in
laboratory experiments (Ellison & Turner 1959; Britter & Linden 1980; Tickle 1996;
Baines 2001; Ross, Dalziel & Linden 2006). We will show that in gravity currents
on horizontal surfaces, the effect of entrainment on the current dynamics becomes
significant only at long times, which cannot be observed in laboratory-scale currents
without the flow becoming dominated by viscous forces (Huppert & Simpson 1980).
This accounts for the success of non-entraining models of gravity current propagation
arising from the instantaneous release of a volume of dense fluid, which predict
that current length grows with time as t2/3, in describing laboratory experiments (e.g.
Rottman & Simpson 1983). However, for natural-scale flows, the effects of viscosity
may remain negligible and thus the dynamics of the motion can become strongly
influenced by mixing with environmental fluid. We show that this mixing causes the
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long-time structure of the flows generated by instantaneous release of dense fluid
(‘lock-release currents’) and sustained sources to be quite different from their non-
entraining counterparts. In particular, the rates at which the currents grow are no
longer given by straightforward dimensional reasoning, leading to similarity scalings
that apply throughout the current (Hoult 1972), but have a more complex structure
in which there are different regions within the current where entrainment plays a
more or less important role. In this contribution, we provide the analytical basis
for understanding these long-time behaviours and for predicting the spreading rules,
and we show explicitly how these results are linked to the form of the entrainment
parameterization.

The paper is structured as follows. In § 2, we present the shallow water model with
entrainment dependent on Richardson number, for which we provide a derivation in
appendix A. In § 3, we find long-time solutions of this model for a current due to
an instantaneous release of dense fluid, obtaining a similarity solution of the second
kind (cf. Barenblatt 1996). The importance of Richardson number dependence in the
entrainment model is highlighted in § 3.2, in which we show that the assumption of
a constant entrainment coefficient leads to a different solution structure and current
growth rate. In § 4, we find long-time similarity solutions for an entraining current
driven by a constant flux, and we again show in § 4.1 that the assumption of a constant
entrainment coefficient leads to a different current structure. We examine the effect
of entrainment at early times in appendix B by calculating the entrainment-induced
perturbations to non-entraining similarity solutions. We summarize the results in § 5
and draw conclusions.

2. Model
We model the gravity current motion using a depth-averaged approach, and derive

governing equations for a Boussinesq gravity current flowing over a horizontal surface
underneath an deep, incompressible ambient fluid (cf. Parker, Fukushima & Pantin
1986, and others). In appendix A, we show that depth-integration of the incompressible
Navier–Stokes equations, and an equation for the transport of a solute by fluid
advection and a Reynolds flux, leads to the equations

∂h

∂t
+ ∂

∂x
(hu)= we, (2.1)

∂

∂t
(hu)+ ∂

∂x

(
hu2
)+ ∂
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g′h2

2

)
=−CDu|u|, (2.2)

∂

∂t

(
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)+ ∂

∂x

(
hug′

)= 0, (2.3)

where x denotes a horizontal coordinate, t denotes time, u is the horizontal flow
velocity, h is the flow height, g′ is the flow reduced gravity, CD is a drag coefficient
and we is the entrainment velocity. Definitions of these depth-integrated variables are
given in appendix A. If there is no entrainment (we = 0), the reduced gravity g′

becomes a constant and (2.1)–(2.3) reduce to the standard shallow water equations
(Stoker 1957), which are frequently used to model gravity currents (Ungarish 2009).
The drag coefficient CD represents drag forces other than those caused by entrainment
of the stationary ambient fluid, predominantly basal drag, and is typically of the
order 10−3–10−2 (Hogg & Pritchard 2004). We will show that the effect of this basal
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FIGURE 1. Experimental measurements and proposed fits of the dependency of entrainment
on the Richardson number. Our simplified dependency (2.4) captures the reduction of
entrainment with increasing Richardson number, and the constant entrainment coefficient
as Ri→ 0. Previous modelling (e.g. Ross et al. 2006) has used a constant entrainment
coefficient.

drag on the current is often small, and does not affect the structure of the current even
at long times.

To close the system, an expression for the entrainment velocity we is required.
Following Morton et al. (1956), we take the rate of entrainment of ambient fluid into a
current due to turbulent mixing to be proportional to the difference in velocity between
a current and the stationary ambient |u|, as indicated by dimensional arguments
(Turner 1986); thus we = E |u|. In Boussinesq, high Reynolds number, high Péclet
number flows, Ellison & Turner (1959) determined that the entrainment coefficient
E is predominantly a function of the bulk Richardson number Ri = g′h/u2, where
E(Ri) tends to a constant, approximately 0.075, for Ri� 1, and decays at higher
Richardson numbers. Subsequent experimental measurements are broadly in agreement
with the results of Ellison & Turner (1959) and indicate that entrainment decays
approximately as E ∼ Ri−1 at high Richardson number (figure 1), although there
is considerable variation between different experiments (Fernando 1991). Theoretical
considerations of the turbulent kinetic energy balance in a gravity current, summarized
by Sherman, Imberger & Corcos (1978), suggest a similar dependence of E on Ri,
with E ∼ Ri−1 when Ri� 1 and E ∼ const. when Ri� 1. We choose a model equation
for the dependence of entrainment coefficient on Richardson number that captures the
observed behaviour of E(Ri) in both high and low Richardson number regimes, and is
of a simple functional form:

we = E |u| = E0

1+ ψRi |u| . (2.4)

With constants ψ ≈ 27 and E0 = 0.075, this function is a reasonable fit to experimental
measurements of entrainment in the literature (figure 1), although the value of ψ
is poorly constrained by existing data – and, in particular, may be smaller than
this (resulting in increased entrainment) for flows over rough surfaces (Fernandez &
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Imberger 2006). When ψ = 0, the law reduces to a constant entrainment coefficient
E = E0, which has been used to model gravity currents on an incline (Turner 1986;
Tickle 1996; Bonnecaze & Lister 1999; Ross et al. 2006). Other empirical fits to
the experimental data have been proposed (Fernando 1991), and we show those of
Parker et al. (1987) and Christodoulou (1986) alongside our model (2.4) in figure 1.
Importantly, the methods we develop below for analysing the long-time behaviour of
currents do not depend strongly upon the precise choice of form of the entrainment
model.

The shallow water equations with no entrainment term have frequently been used to
model two-dimensional gravity currents spreading over a horizontal surface (Hoult
1972), with a constant Froude number boundary condition (Fr = u/

√
g′h ≈ 1) at

the flow front, representing the effect on the current of a non-shallow flow ‘head’
(Benjamin 1968; Huppert & Simpson 1980; Shin, Dalziel & Linden 2004; Marino,
Thomas & Linden 2005; Ungarish 2009). The long-time solution of this shallow water
model of an instantaneous release of a dense fluid is a ‘buoyancy-inertial’ similarity
solution, where, in terms of the reduced gravity g′ and a constant volume per unit
width V , both dependent on the initial conditions, the current length xf varies as
(g′Vt2)

1/3, current velocity u ∼ (g′V/t)1/3 and current height h ∼ (V2/g′t2)
1/3. The

existence of this buoyancy-inertial regime has been verified by laboratory experiments
(Rottman & Simpson 1983) and emerges as an attracting similarity solution to the
underlying model equation (Mathunjwa & Hogg 2006). However, substituting these
scalings into the mass equation for an entraining gravity current (2.1) and (2.4), we
find that the terms ∂h/∂t and ∂(hu)/∂x scale as (V2/g′t5)

1/3, whereas the entrainment
term we scales as E0(Vg′/t)1/3. At large times (when t� τ , where τ ∼ (V/(g′2E3

0))
1/4),

the entrainment term then becomes unbalanced in (2.1). Thus, at sufficiently long
times, currents in the buoyancy-inertia regime must transition to a new solution in
which entrainment forms part of the dominant balance, even if the rate of entrainment
(governed by E0) is small. In laboratory experiments, the transition to a viscous-
buoyancy similarity regime (Huppert & Simpson 1980) may occur before entrainment
becomes significant, preventing observation of the entraining regime. However, in
larger-scale natural flows, where the onset of viscous effects occurs much later, the
entraining solution that we describe may describe the predominant flow regime of the
current.

Ross et al. (2006) showed that equations similar to (2.1)–(2.3), with a constant
entrainment coefficient, and extended to include the effect of a finite incline, admit
a similarity solution for a finite release of dense fluid, in which the current length
xf ∼ t2/3, h ∼ t2/3 and g′ ∼ t−4/3 (here, for clarity, we have dropped the factors that
render these relationships dimensionally consistent). Ross et al. (2006) argued that this
solution is valid only above a critical slope angle; in § 3.2, we extend this solution to
the case of a horizontal gravity current and show how the structure of the similarity
solution and the spreading rule is changed.

The buoyancy conservation equation (2.3) implies that

d
dt

∫ xf

0
g′h dx= (hug′)x=0, (2.5)

where, for kinematic consistency,

dxf

dt
= u(xf , t). (2.6)
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For a current generated by the instantaneous release of dense fluid, with a barrier
(or plane of symmetry) imposing the boundary condition hug′ = 0 at x = 0, the total
buoyancy of the current B0 is constant, which implies that∫ xf

0
g′h dx= B0. (2.7)

When u(0, t)= 0, and provided that h(0, t) > 0, the characteristic equation

dg′

dt
=−Eg′u

h
on

dx

dt
= u (2.8)

reduces to (∂g′/∂t)x=0 = 0; that is, the excess density at the back of the current is
constant.

For a current driven by a sustained flux, we specify the buoyancy flux QB =
(hug′)x=0 and reduced gravity g′0 = g′(0, t) at the inflow, both constants. (We note that
imposing only two boundary conditions assumes that the flow at x= 0 is subcritical; at
sufficiently large times, this is the case for the similarity solutions found in this paper.)
Further imposing xf (0)= 0, we obtain∫ xf

0
g′h dx= QBt. (2.9)

At the front of the current, we apply a constant Froude number condition,

dxf

dt
= u(xf , t)= Fr0

(√
g′h
)

x=xf

, (2.10)

where Fr0 is a constant that is close to unity (Huppert & Simpson 1980; Shin et al.
2004). For the purposes of our computations, we adopt Fr0 = 1 (Shin et al. 2004),
although it will be shown that the value of the Froude number does not strongly
influence the structure of the solutions.

To study the effect of entrainment on solutions of the governing equations
(2.1)–(2.3), we introduce checked (ˇ) dimensionless variables that have scales based
on the onset time of entrainment, defined as{

x, t, h, u, g′
}={( B0

g′0E0

)1/2
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(
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g′30 E3
0
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ť,

(
B0E0

g′0

)1/2

ȟ,
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)1/4
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}
(2.11)

in the case of a constant buoyancy lock-release, and as
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B ǔ, g′0ǧ′
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in the case of a current driven by a constant flux. In both situations, (2.1)–(2.3)
become
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∂ ť
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with boundary conditions ǧ′ = 1 and ȟǔ= 1 at x̌ = 0 for the case of constant flux, and

ǧ′ = 1 and ǧ′ȟǔ= 0 at x̌= 0 with an initial condition that satisfies
∫ x̌f

0 ȟǧ′ dx̌= 1 in the
case of constant buoyancy. We note that with these non-dimensionalizations, in which
scales are based on the onset time of entrainment rather than on the current initial
conditions, the non-dimensional initial conditions depend on E0, scaling as x̌f ∼ E1/2

0

and ȟ ∼ E−1/2
0 , and that the governing equations feature only the parameters CD/E0

and ψ . This choice of dimensionless variables is advantageous for the analysis that
follows. However, in the limit of vanishing E0, which corresponds to the solutions
when t� 1, these early-time scalings result in the right-hand side of (2.13) becoming
negligible, and the non-entraining shallow water model for gravity currents (Rottman
& Simpson 1983) is recovered. Henceforth, we use the dimensionless version of the
model (2.13)–(2.15), and for clarity we drop the checks.

2.1. Numerical solution of the model

The model (2.13)–(2.15) is a system of hyperbolic conservation laws, which can be
solved numerically by a wide variety of techniques (LeVeque 2002; Toro 2009); we
use the method of Kurganov & Tadmor (2000), a semi-discrete non-oscillatory central
scheme, with a WENO limiter to prevent spurious oscillations at any shocks that form
in the solution. We solve the equations numerically using rescaled spatial coordinate
y = x/xf (t), which simplifies the flow domain to 0 6 y 6 1. To apply the constant
Froude number boundary condition at y = 1, we augment the vector of unknowns
resulting from the spatial discretization of the conservation laws (Kurganov & Tadmor
2000) with four additional variables: xf , and the solution variables h, u and g′ at x= xf .
The temporal evolution of these frontal variables is governed by the four ordinary
differential equations d/dt (Fr0) = 0, the kinematic condition (2.6), the characteristic
equation (2.8) and a further characteristic equation associated with characteristics
moving at speed u +√g′h. We apply the values of h, u and g′ at x = xf thus obtained
as boundary conditions at y= 1 in the spatially discretized problem.

A numerical solution of the governing equations (2.13)–(2.15) representing an
instantaneous lock-release gravity current is shown in figure 2 for times up to t = 50.
The parameters Fr0 = 1, ψ = 27 are chosen to reflect experimentally measured values,
and we choose CD/E0 = 0 and an initial lock aspect ratio of 1:1 in dimensional
variables. At early times there is very little entrainment into the current, but by t = 50
entrainment has reduced the excess density at the current front to ∼13 % of its initial
value. This entrainment has relatively little effect on the current dynamics at the
times illustrated in figure 2; the effective drag caused by acceleration of stationary
ambient fluid that is entrained into the current results in a current length at t = 50
that is approximately 8 % less than that of an equivalent non-entraining current. In
appendix B, we quantify these effects at early times (t . 30) by calculating the
perturbations to the non-entraining buoyancy-inertial similarity solution that result
from entrainment. These calculations bring out the important features of entrainment,
which are that there is most mixing close to the front, leading to a current that is both
deeper and slower than the non-entraining counterparts.

At later times, however, entrainment is no longer a perturbation to the non-
entraining flow, but instead plays a leading-order role in current dynamics. This
implies that the early-time perturbations in appendix B no longer capture the motion
and so a different approach is required. The current length xf and two measures of
the dilution of the current, the total current volume

∫ xf
0 h dx and reduced gravity at the



484 C. G. Johnson and A. J. Hogg

x

(a)

(b)

(c)

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

2 4 6 8 10 12 14 16

FIGURE 2. The height h(x, t), velocity u(x, t) and reduced gravity g′(x, t) as functions
of distance for an entraining gravity current with ψ = 27, Fr0 = 1 and CD/E0 = 0 at
t = 1, 2, 5, 10, 25, 50. The initial conditions represent the instantaneous release of a lock
of dense fluid with aspect ratio 1 (h = 1/

√
E0, g′ = 1 for 0 6 x 6

√
E0, h = g′ = 0 elsewhere,

u= 0 everywhere), and are indicated with dashed lines.

current front g′(xf , t), are plotted as functions of time in figure 3, both for ψ = 27,
Fr0 = 1 and CD/E0 = 0, as used in figure 2, and for the same entrainment law and
front condition but with a non-zero drag coefficient CD/E0 = 0.1. In both cases, up
to t ≈ 20 the current volume remains close to its initial value, indicating relatively
small amounts of entrainment, and the growth of the current is in agreement with
existing theory and laboratory experiments (e.g. Rottman & Simpson 1983), with an
initial adjustment phase, where (xf − x0)∼ t, transitioning to a buoyancy-inertial phase
in which xf ∼ t2/3. By t = 100, the front of the current is substantially diluted, and
for larger times a new regime is established in which xf scales as a power of t that
is dependent on the parameters CD/E0, Fr0 and ψ ; in particular, as t0.447 for the
current without basal drag and as t0.412 for the current with CD/E0 = 0.1. The onset
time of this new regime is dependent on ψ , Fr0 and CD/E0, in particular, occurring
sooner as CD/E0 increases. The onset of this late-time regime is illustrated by the
plots in figure 3(a) of the current front position xf rescaled by its late-time behaviour
xf /(ctγ ), and by the plots in figure 3(c) of the gradient of the log–log plot of xf

against t, d log(xf )/d log(t), which indicate that the current with CD/E0 = 0.1 is close
to its late-time behaviour by t = 160. Although the late-time power-law exponent γ is
dependent on ψ , Fr0 and CD/E0, it is independent of the initial conditions: it is this
variation of the power-law exponents that we explain in the next section.

We note that, for sufficiently large times, viscous effects become significant even in
very large currents. The time at which viscosity starts to affect flows in the buoyancy-
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FIGURE 3. The time-evolution of entraining density currents generated by a lock-release
initial condition, determined from time-dependent numerical solutions of the governing
equations, with parameters ψ = 27, Fr0 = 1 and CD/E0 = 0 (solid lines) and CD/E0 = 0.1
(dashed lines). (a) The front position xf as a function of time. At large times, the current with
CD/E0 = 0 grows as xf ∼ c1t0.447 and the current with CD/E0 = 0.1 grows as xf ∼ c2t0.412. The
approach to these long-time behaviours is indicated in the plot of xf /(ctγ ) (where γ = 0.447
for the solid curve representing CD/E0 = 0 and γ = 0.412 for the dashed curve representing
CD/E0 = 0.1). (b) Reduced gravity at the flow front g′(xf , t) and the total current volume as
functions of time. (c) The quantity d log(xf )/d log(t), which can be interpreted as the gradient
of the log–log plot of xf against t in (a). The dotted lines indicate the values 0.447 (top)
and 0.412 (bottom), the long-time limits of the currents with CD/E0 = 0 and CD/E0 = 0.1,
respectively.

inertial is regime is given by Huppert (1982), and in our non-dimensionalized variables
is as follows:

tv = V9/28η−3/7g′3/14E3/4
0 , (2.16)

where η is the kinematic viscosity of the fluid and V is the volume per unit width
of initial lock-release. Evaluating this expression with values suitable for a submarine
current (η = 10−6 m2 s−1, g′ = 1 m s−2, E0 = 0.075) indicates that viscosity can be
neglected for t < 53 in currents with an initial lock length scale V1/2 of 1 m, for
t < 150 in currents with an initial length scale of 5 m and for t < 235 in currents with
an initial length scale of 10 m. Currents with drag and entrainment parameterized
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by CD/E0 = 0.1 and ψ = 27 reach the entraining similarity regime at t ≈ 160
(figure 3), confirming that, while entrainment will act only as a small perturbation
to laboratory-scale flows (detailed in appendix B), large-scale environmental flows may
well be governed by the entraining regime that we now describe.

3. Similarity solutions for a lock-release gravity current
We seek similarity solutions to the equations governing the evolution of an

entraining gravity current (2.13)–(2.15) in the case of a lock-release current at long
times, when entrainment plays a non-negligible role. To this end, we write general
similarity forms for the dependent variables,

xf = ctγ , h= ctαH(y), g′ = ctβG(y) and u= ctγ−1U(y), (3.1)

where y = x/xf . The constant exponents α, β and γ , similarity functions H(y), G(y)
and U(y) and constant c are to be determined as part of the solution. We find
that the boundary condition of constant g′ = g′0 at x = 0 (2.8) cannot be satisfied
simultaneously with a scaling that allows the entrainment term in (2.13) to remain
balanced with the other terms. This means that there cannot be a straightforward
similarity solution but, rather, a more complicated structure, which will nevertheless
be shown to admit a self-similar solution in the bulk of the flow. Given that the only
mismatch occurs at the rear boundary (x = 0), we let (3.1) represent the scalings of
an outer region, comprising the bulk of the current, and introduce a second set of
scalings,

xc = ctC, h= ctAĤ(η), g′ = cĜ(η) and u= ctC−1Û(η), (3.2)

where η = x/xc, in an ‘inner’ region near the boundary at x = 0. Here, A and C are
constant exponents and Ĥ(η), Ĝ(η) and Û(η) are similarity functions within the inner
region.

To match the constant Froude number condition at the current front, we scale
the Froude number to be independent of time in the outer region; this implies
α + β − 2(γ − 1) = 0. Furthermore, we look for solutions where the entrainment
term in (2.13) is in balance with the other terms in the outer region: since the
Richardson number in the outer region does not depend on time, this gives γ = α.
By contrast, the Richardson number in the inner region grows with time, which
validates the assumption of subcritical inflow at large times needed when applying two
boundary conditions at x = 0. This increasing Richardson number also implies that
∂(g′h2/2)/∂x has nothing to balance it in (2.14) and therefore that g′h2 is constant
in the inner region, to leading order at large times: matching then suggests that
g′h2 should be scaled in the same way in both the inner and outer solutions, i.e.
2A + B = 2α + β. Finally, by imposing a constant total buoyancy (2.7), we obtain
max(α+β+γ,A+C)= 0. This can only be satisfied if A+C = 0 with α+β+γ < 0,
meaning that, at large times, the total buoyancy of the current is contained almost
entirely in the inner region. Thus we have a current with an extensive bulk outer
region, within which mixing with the ambient fluid is important and fluid inertia
and the hydrostatic pressure gradient dominate the dynamics, matched to a relatively
quiescent inner region close adjacent to the rear boundary, within which entrainment
plays only a relatively weak role. Although of negligible extent, it is the inner region
that provides the dominant contribution to the overall buoyancy.

Prescribing these constraints on the time dependencies of the similarity form of
the dependent variables, we obtain a system in which the scaling exponents are not
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determined a priori, but have one undetermined parameter. Writing the scalings in
terms of the current growth exponent γ , we have α = γ , β = γ − 2, A= 3γ /2− 1 and
C = −3γ /2 + 1. In the outer region, denoting differentiation with respect to y by a
prime, the ordinary differential equations governing the similarity variables are then

γH − γ yH′ + (HU)′ = U

1+ ψGH

U2

, (3.3)

(2γ − 1)HU − γ y(HU)′ +
(

HU2 + 1
2

GH2

)′
=−CD

E0
U2, (3.4)

(2γ − 2)HG− γ y(HG)′ + (HUG)′ = 0. (3.5)

The boundary conditions at y = 0 are obtained by matching the outer solution to the
inner; in applying these conditions at y = 0, we suppose that the inner region grows
more slowly than the outer region; that is, C < γ . This inequality implies γ > 2/5, and
that U→ 0 as y→ 0. At the front of the current we impose the kinematic condition
U(1)= γ and Froude number condition U(1)= Fr2

0G(1)H(1).
With this kinematic condition, (3.5) becomes singular at y = 1. It is therefore

instructive to consider the power series of the equations about this point, and letting
s= 1− y, we construct a power series of the form

H = H0 + H1s+ · · ·, U = U0 + U1s+ · · · and G= G0 + G1s+ · · ·. (3.6)

Substituting into (3.3)–(3.4), an additional boundary condition is obtained from the
coefficients of the constant terms, H0 = γFr2

0/(2 − γ )(Fr2
0 + ψ). We thus have

four boundary conditions to impose on the third-order boundary value problem
(3.3)–(3.5) with unknown parameter γ , and we numerically integrate it using a
shooting technique.

The solution of this eigenvalue problem is shown in figure 4. The growth exponent
eigenvalue γ varies with the entrainment law parameter ψ (figure 4a), although the
dependence is remarkably weak; over a range of ψ between 1 and 1000 (centred
around the experimentally inferred value ψ = 27), the current growth rate γ ≈ 0.447
varies only by ∼3 %. While the dependence on ψ is weak, the difference between
the current growth rate with no entrainment (t2/3) and that predicted by our model is
significant.

The eigenfunctions at ψ = 27 (figure 4b) are typical of those obtained. The
buoyancy force GH2 is almost constant throughout most of the current, where the
Richardson number is large (quiescent flow) and the entrainment small. Near the front
of the current, the flow height H is greater than that in the bulk of the current, and the
entrainment coefficient is greatest. The current velocity U is slightly less than that of
a linearly expanding current (which would have U = γ y), indicating that fluid near the
front of the current is transported into the flow ‘tail’. This structure for a lock-release
current, with a flow head in which entrainment is important and a tail region supplied
with fluid left behind by the head, is consistent with the structure found at late times
in experimental lock-release currents (Hallworth et al. 1996).

3.1. Similarity structure of the current
Similarity solutions are commonly obtained as the long-time solutions of PDEs
governing physical systems. If the scalings associated with these similarity solutions
can be obtained directly, either from dimensional analysis alone or through scaling of
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FIGURE 4. (a) The current growth exponent, γ , as a function of ψ . The solid line indicates
values calculated from solutions of the similarity eigenvalue problem (3.3)–(3.5); crosses
(×) indicate values calculated from time-dependent numerical solutions at very large times.
The dashed line and plus signs (+) illustrate the corresponding growth exponents using the
entrainment law (3.7) proposed by Parker et al. (1987). The vertical dotted line shows the
experimentally inferred value ψ = 27. (b) The current height H, velocity U and GH2 in
similarity variables, calculated from a solution of (3.3)–(3.5) for ψ = 27.

the governing equations, the solution is known as a similarity solution of the first kind.
Frequently, the multiplicative constant applied to the scalings (c, in (3.1)) can then be
determined by solving the similarity equations and making use of a conserved quantity
in the system. In the similarity solution for the entraining gravity current derived
in this section, the similarity scalings are not determined from inspection of the
equations but, instead, by solution of an eigenvalue problem. This is a characteristic
of self-similar solutions of the second kind (Barenblatt 1996), which also have the
property that the multiplicative constant cannot be determined globally, but is instead
dependent on the initial conditions of the problem and the time-dependent approach
to similarity. This behaviour is observed in time-dependent numerical solutions of the
governing equations (2.13)–(2.15). Long-time growth exponents are determined from
time-dependent solutions, such as the results of the numerical computations plotted
in figure 3, by extending these computations to very long times and numerically
evaluating the gradient of log(xf ) against log(t), which approaches the constant growth
exponent at large times (figure 3c). These calculations, indicated by the crosses in
figure 4(a), match those predicted by the similarity solution, suggesting that the
similarity solution described is realized by the system at large times.
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FIGURE 5. The dependence of the current growth exponent γ on (a) ψ and the frontal
Froude number Fr0 at CD = 0, and (b) ψ and CD at Fr0 = 1, for a current generated by the
instantaneous release of a fixed volume of dense fluid. The thick line common to both plots
(and to figure 4) illustrates the case Fr0 = 1, CD = 0. The vertical dotted lines illustrate the
value ψ = 27 fitted from experimental measurements.

The structure found for entraining ‘lock-release’ currents, in which the current
scalings are dependent on γ and scalings in a region near x = 0 differ from those
near the current front, is insensitive to the exact formulation of the entrainment law.
The growth rate of similarity solutions calculated with an entrainment rate of the form
suggested by Parker et al. (1987),

Eparker(Ri)= 0.075√
1+ ψ2Ri2.4

, (3.7)

is illustrated in figure 4(a) with a dashed line, and is similar to those obtained with the
simple entrainment law (2.4).

The effect of the frontal Froude number Fr0 on the current growth rate is illustrated
in figure 5(a). When ψ ≈ 27, the current growth rate is remarkably insensitive to the
frontal Froude number Fr0, varying by less than 2 % within the range Fr0 = 0.5–2. We
note that in the limit Fr0→∞ (which is applied when modelling shallow free-surface
flows, and here corresponds to the boundary condition g′ = 0 at the current front), the
current structure is unchanged and the growth rates are similar to those at Fr ≈ 1.
This is in contrast to solutions of the non-entraining shallow water equations, in which
finite and infinite Froude number conditions at the flow front result in qualitatively
different behaviour (Hogg 2006).

The effect of basal drag on the current, parameterized through the coefficient CD,
is shown in figure 5(b). At physically realistic values of CD/E0 = 10−2 to 10−1, the
predicted growth exponent of the current is decreased slightly from the value observed
for CD = 0 to approximately 0.42 to 0.44. In the limit ψ →∞, for finite CD the
growth exponent α tends to 2/5 from above. In this limit, the scalings in the inner
region tend to those of a non-entraining drag-dominated current (Hogg & Woods
2001).

3.2. Constant entrainment coefficient
When the entrainment coefficient is taken to be constant (i.e. ψ = 0, which is a
simplification made in previous studies, e.g. Ross et al. 2006), the current structure
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differs from that in the ψ > 0 case above when the coefficient is dependent on
the Richardson number. Applying the same conditions to the scalings of inner and
outer variables as before, and specifying that the entrainment coefficient is constant in
(2.13), implies that within the ‘inner’ region there is an additional constraint arising
from imposing a balance between the entrainment flux E|u|, with its now constant
coefficient, and the other terms ∂h/∂t and ∂(hu)/∂x. This additional constraint, which
implies A = C, is necessary to avoid the entrainment term becoming larger than the
other two and, together with the constraints obtained earlier, uniquely determines the
scalings. We find that xf = t2/3, u ∼ t−1/3, h ∼ t2/3 and g′ ∼ t−4/3 in the outer region,
while within the inner, xc, g′, h ∼ 1 and u ∼ t−1. Under these scalings, xg′h ∼ 1 in
both the inner and the outer regions and so we cannot identify which region, if either,
contributes dominantly to the integral expression for the conservation of buoyancy.

Using these outer scalings, and integrating (3.5) subject to the boundary condition
U(1) = 2/3, gives U = 2y/3. Equation (3.3) then gives H = y/2 and (3.4), with the
boundary condition G = 0 at y = 1, then gives G = (8/9)((1 + Fr−2

0 )y
−2 − y). This

outer solution is a special case of the solution presented for flows on an incline
by Ross et al. (2006). We note that G diverges as y→ 0 and evidently does not
satisfy the required boundary condition G(0) = t4/3. While this difficulty may be
rectified by introducing a boundary layer region close to the back wall (x = 0), the
buoyancy integral in bulk of the flow

∫ 1
δ

HG dy continues to diverge logarithmically.
This observation suggests that logarithmic corrections to the straightforward similarity
solution may be required, and this is indeed what we establish below.

We introduce the following expressions for the velocity, height and reduced gravity
field:

h= xf H̃(y, t), u= ẋf Ũ(y, t) and g′ = ẋ2
f

xf
G̃(y, t), (3.8)

where xf = t2/3Λ(t). At long times (t� 1), we construct solutions where

Ũ(y, t)= Ũ0(y)+ · · ·, H̃(y, t)= H̃0(y)+ · · · and G̃(y, t)= G̃0(y)+ · · ·, (3.9)

and t dΛ/dt � Λ, a condition that will be shown to hold in what follows. We
substitute these expressions in the governing equations (2.13)–(2.15) and apply

boundary conditions at the front of the current (Ũ0 = 1, Ũ0 = Fr0(G̃0H̃0)
1/2

at y = 1),
to find that

Ũ0 = y, H̃0 = y

2
and G̃0 = 2

(1+ Fr−2
0 − y3)

y2
. (3.10)

Up to the different pre-factor of g′ in (3.8), these are identical to the solutions
established by Ross et al. (2006). These solutions do not satisfy the boundary
condition at y = 0, namely G̃ = xf /ẋ2

f , and so we examine the governing equations

within a small region of size y ∼ δ = ẋf /x
1/2
f close to the back wall at y = 0. To this

end, we introduce a rescaled spatial coordinate, Y = y/δ, and seek solutions of the
form

H̃ = δH̄0 + · · ·, Ũ = δŪ0 + · · · and G̃= δ−2Ḡ0 + · · ·, (3.11)

where the distinguished scalings for these ‘inner’ variables are determined by matching
to the bulk of the current. The most important term in the leading-order governing
equations within the inner region comes from the momentum equation, which asserts
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that

∂

∂Y

(
H̄2

0Ḡ0

)= 0. (3.12)

This is entirely similar to the matching procedure and the leading-order dynamics of
current governed by a variable entrainment coefficient (§ 3). Matching then enforces

H̄2
0Ḡ0 = 1

2

(
1+ 1

Fr2
0

)
. (3.13)

Finally, we are in a position to enforce the conservation of buoyancy, which in this
case has contributions from both the bulk of the flow and the ‘inner’ region. This
integral may be evaluated to leading order by splitting it into separate contributions

ẋ2
f xf

[
1
δ

∫ δµ

0
H̄0Ḡ0 dy+

∫ 1

δµ
H̃G̃ dy

]
= 1, (3.14)

where µ is an arbitrary constant (µ > 1): we anticipate that the final expression must
be independent of µ to leading order. First, in the outer region, we find that∫ 1

δµ
H̃0G̃0 dy=

(
1+ 1

Fr2
0

)
µ log

1
δ
− 1

3
+ δ

3µ

3
. (3.15)

In the inner region, using (3.13),∫ δµ

0
H̄0Ḡ0 dy=

∫ δµ−1

0

1

2H̄0

(
1+ 1

Fr2
0

)
dY. (3.16)

Since H0(Y)= O(1) for Y = O(1), its contribution to the integral is of O(1) magnitude
and we cannot evaluate it without further knowledge of the solution in the inner region.
However, this term is subdominant; H0 ∼ Y/2 as Y→∞ by matching, so the Y � 1
part of the integral makes an O(log δ) contribution, namely∫ δµ−1

0

1

2H̄0
dY =

(
1+ 1

Fr2
0

)
(1− µ) log

1
δ

(+O(1) terms). (3.17)

Hence, combining these results, we find that to leading order,

ẋ2
f xf

(
1+ Fr−2

0

)
log

1
δ
= 1, (3.18)

which, as expected, is independent of µ. To complete this evaluation and determine Λ,
we now substitute the leading-order expression for δ = (3/2)t−2/3 and thus when t� 1,

xf ∼ 3
2

(
t2(

1+ Fr−2
0

)
log t

)1/3

. (3.19)

This asymptotic long-time solution represents a logarithmic correction to the
straightforward similarity solution (for which xf ∼ t2/3), and shows good agreement
with the front position found from direct time-integration of the governing equations
(2.13)–(2.15) (figure 6).
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FIGURE 6. The dimensionless front position xf as a function of time for an entraining
density current with constant buoyancy and ψ = 0, with Fr0 = 1, CD = 0, determined from
time-dependent numerical solutions of the governing equations (solid line). The long-time
asymptotic solution given by (3.19) is indicated by a dashed line.

4. Similarity solutions for a current generated by a continuous source
For gravity currents due to a constant flux of buoyancy, the non-entraining shallow

water model admits a solution with finite Froude number condition at the current
front, in which the current expands linearly (xf ∼ t) and the flow height and velocity
take constant values throughout the current (see, e.g., Gratton & Vigo 1994). As with
currents caused by an instantaneous release of dense fluid, the addition of entrainment
to the model of such a current has a relatively small effect on the dynamics at
sufficiently early times (figure 7). At these early times, the velocity and height of the
current are approximately uniform, as suggested by the non-entraining solution, but
entrainment into the body of the current results in a decrease in the reduced gravity of
the current, a small increase in current height and a corresponding decrease in velocity.
These early-time features exactly parallel those effects observed for currents generated
by an instantaneous release of dense fluid. They may be analysed while they are small
perturbations using the techniques of appendix B.

The front position xf increases more slowly than the linear growth found in the
non-entraining case, and at larger times approaches the growth rate xf ∼ t4/5 (illustrated
in figure 8), where, as with currents caused by an instantaneous release of fluid, the
entraining regime is reached at t ≈ 150. Unlike in currents caused by an instantaneous
release of fluid, where the growth rate exponent was a function of the problem
parameters, in the case of currents fed by a constant flux of buoyancy, the growth rate
exponent is fixed at 4/5 and only the constant of proportionality is dependent on the
parameters ψ , CD/E0 and Fr0.

The similarity scalings for a current driven by a constant buoyancy flux are derived
in a similar manner to a current caused by an instantaneous release of fluid. With a
constant flux of buoyancy, the total current buoyancy now increases linearly, implying
the relationship max(α + β + γ,A + C) = 1 in the scalings (3.1)–(3.2). In the case of
the current due to an instantaneous release, entrainment was found to be unimportant
in the inner region. Making the same assumption in the case of constant flux, and
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FIGURE 7. The solution at early times of the governing equations of an entraining density
current generated by a source of constant flux, (2.13)–(2.15), with ψ = 27, Fr0 = 1,
CD/E0 = 0.

solving the inner similarity equations without an entrainment term, does not permit
matching of the inner and outer regions. We therefore look for solutions where
the entrainment term in (3.3) now balances the other terms, giving an additional
equation, 3C−2A−2= 0, which fully determines the similarity scalings, γ = α = 4/5,
β = −6/5, C = 4/5, A = 1/5. Since C = γ , the inner and outer regions both expand
as t4/5 and have no scale separation. Thus the inner spatial variables in the inner and
outer regions coincide (η = y), and we expect the transition between the inner and
outer regions to occur at y = yc where 0 < yc < 1, with the outer scalings applying in
yc < y 6 1 and the inner scalings in 0 6 y< yc.

Having determined the scalings, we now seek the form of the similarity solution for
a current driven by a sustained buoyancy flux at x = 0. Considering the inner region
first, substituting the inner scalings into (2.14) implies (ĜĤ2)

′ = 0, which integrates to
give ĜĤ2 = K, a constant. Substituting the inner scalings into (2.13)–(2.15) then gives

2
5
+ 2Û′ = Û3

ψK
, (4.1)

2
(

Û − 4
5
η

)
Ĥ′ = Û3Ĥ

ψK
. (4.2)

Since Ĥ ∼ t1/5, whereas in the outer region H ∼ t4/5, for matching between the two
we require Ĥ to diverge as y→ yc. From (4.2), this is only possible if both Û = 4y/5
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FIGURE 8. The time-evolution of entraining density currents generated by a constant-flux
source, determined from time-dependent numerical solutions of the governing equations, with
parameters ψ = 27, Fr0 = 1 and CD/E0 = 0 (solid line) and CD/E0 = 0.1 (dashed line).
(a) For both values of CD/E0, xf ∼ ct4/5 at large times (where c is dependent on CD/E0,
Fr and ψ); the approach to this long-time behaviour is indicated in the plot of xf /(ct4/5).
(b) Reduced gravity at the flow front g′(xf , t) and the ratio of the total current volume to the
volume emitted by the source.

and Û′ = 4/5 at η = yc which, from (4.1), implies a relationship between K and yc,

K = 32
125ψ

y3
c . (4.3)

With the change of variables Ũ = 54/3Û/4yc, η̃ = 4ycη/51/3, (4.1) reduces to

dŨ

dη̃
= Ũ3 − 1, (4.4)

which has the solution

η̃ = 1
6

[
2 ln

(
Ũ − 1

)− ln(Ũ2 + Ũ + 1)− 2
√

3 tan−1

(
2Ũ + 1√

3

)]
+ const. (4.5)

However, with the two boundary conditions at x = 0 (cĜ = 1 and c2ĤÛ = 1), two
boundary conditions on U and K at y= yc, and two undetermined parameters, c and yc,
the three similarity equations need one further condition to be determined fully.

This additional condition is found from matching to the outer region, in which
the similarity equations are (3.3)–(3.5), with γ = 4/5. As for the current due to an
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instantaneous release, we construct power series for H, U and G about y= 1, but now
find that a more general series than (3.6) is possible:

H = H0 + Hλs
λ + H1s+ · · ·, U = U0 + U1s+ Uλs

λ+1 + · · ·,
G= G0 + Gλs

λ + · · ·,

}
(4.6)

in which non-integer powers of s = 1 − y are present. Substituting into (3.3)–(3.5),
with γ = 4/5, and applying the kinematic condition U0 = 4/5 and the Froude number
condition U0/(G0H0)

1/2 = Fr0, we find that the all coefficients of integer powers are
determined, as is the non-integer power λ = (3/2)(Fr2

0/(Fr2
0 + ψ)). We find also that

Uλ and Gλ must be related to Hλ by

Uλ = 9Hλ

5
Fr2

0 + ψ
5Fr2

0 + 2ψ
, Gλ =− 72Hλ

25Fr6
0

(
Fr4

0 + 2Fr2
0ψ + ψ2

)
, (4.7)

but that the overall coefficient multiplying the non-integer powers, Hλ, remains
undetermined, which introduces one additional unknown into the problem. In the
limit y→ yc, we require from matching with the inner solution that U→ 4yc/5 and
that GH2→ 32y3

c/125ψ .
Solutions to the three outer similarity equations and the two unknown parameters yc

and Hλ are then fully determined by three boundary conditions at y = 1 on H, U and
G and two conditions at y = yc on U and GH2. With yc determined, the inner solution
and the constant c are also then determined. This similarity solution is plotted in
figure 9 for a range of ψ . The value of yc, indicated by the point at which U touches
the line 4y/5, increases with increasing ψ . For ψ & 1 (including the case ψ = 27
inferred from experimental results: see § 3), the outer region y > yc only occupies a
small proportion of the current near y= 1; consequently, the concentration g′ (denoted
by solid lines in figure 9b) remains of the same order as the inflow concentration
throughout most of the current. The entrainment in the inner region is small since
Ri ∼ t3/5, whereas in the outer region Ri = O(1) and the bulk of the entrainment
occurs. In the experimentally inferred case ψ = 27, this restricts the majority of the
entrainment to a small region at the current front.

We show the similarity solution for ψ = 0.1 in figure 10 with the corresponding
numerical solution of (2.13)–(2.15) at t ≈ 2 × 106. We choose this very late time
to illustrate the close matching between the finite-time numerical solution and the
long-time similarity solution, which strongly suggests that at late times the similarity
solution is realized by time-dependent solutions of the governing equations. In
figure 10(b), the same similarity and time-dependent numerical solutions for h are
illustrated on a log scale to emphasize the increasing scale separation with time of
h (and g′) between the inner and outer regions. Whereas the long-time similarity
solution (solid lines in figure 10b) predicts that Ĥ diverges as y→ yc from below
and that H→ 0 as y→ yc from above, at the finite time illustrated in this solution,
the time-dependent numerical solution (dashed line) instead exhibits a transition region
when y≈ yc between the inner and outer scalings for h.

4.1. Constant entrainment coefficient
When the entrainment coefficient is constant (ψ = 0), as used by Ross et al. (2006),
we find that gravity currents driven by a sustained flux at the source evolve in
a different manner from those governed by the variable entrainment coefficient
described above. This behaviour is analogous to the lock-release currents with constant
entrainment coefficient, described in § 3.2, and we approach the problem as before,
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FIGURE 9. Long-time similarity solutions for a current generated by a source of constant
flux, for Fr0 = 1, across a range of values of ψ . In (a), dashed lines represent H in the outer
region and solid lines represent U. The dotted line is 4y/5. In (b), dashed lines represent GH2

and solid lines g′ in the inner solution.

looking first for solutions with ‘inner’ and ‘outer’ regions that obey the scalings (3.1)
and (3.2). It can be shown that the entrainment flux E|u| must balance the other terms
in the mass equation, which implies that C = A = 1/2 and γ = 1. Thus in the outer
region we have x ∼ t, h ∼ t, u ∼ 1 and g′ ∼ t−1, while in the inner we have x ∼ t1/2,
h ∼ t1/2, u ∼ t−1/2 and g′ ∼ 1. Notably, each region then contributes to the overall
buoyancy (g′hx) with the same linear time dependence.

With these scalings, the similarity equations in the outer region become

H − yH′ + (HU)′ = U, (4.8)

−yU′ + UU′ + GH′ + 1
2

HG′ =−U2

H
, (4.9)

−G− yG′ + UG′ =−UG

H
, (4.10)

with the source condition UGH = 1/c3 at y = 0 and front conditions U = 1 and
U = Fr0

√
GH (which becomes GH = Fr2

0) at y = 1. These outer equations cannot be
solved analytically, but by carefully expanding the dependent variables close to the
origin (details in appendix C), we find that

H = y

2
+ y

4 log (k1/y)
+ · · ·, (4.11)
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FIGURE 10. The similarity solution and the time-dependent numerical solution at t = 2× 106

for a current generated by a source of constant flux with ψ = 0.1. Solid lines indicate the
similarity solution; dotted lines indicate the time-dependent solution. In (a), the solution is
scaled to the outer similarity scalings; in (b), a log scale on the vertical axis illustrates the
separation of scales between the inner and outer regions.

U = y log (k1/y)+ · · ·, (4.12)

GH2 = k2 + · · ·, (4.13)

where k1 and k2 are constants. This analysis reveals two features that together
mean that a straightforward similarity solution is not applicable. First, the reduced
gravity G ∼ 4k2/y2 when y � 1, and thus requires an inner region of size
y ∼ t−1/2 to match the boundary condition g′ = 1. Second, the buoyancy flux at the
origin, UGH = 2k2 log(k1/y) when y� 1, diverges logarithmically as the source is
approached, suggesting that logarithmic corrections to the scalings will be required.
Both of these features are analogous to a current generated by an instantaneous release
of dense fluid (§ 3.2).

On this basis, we introduce variables in the outer region of the form

h= xf H̃(y, t), u= ẋf Ũ(y, t) and g= ẋ2
f

xf
G̃(y, t), (4.14)

where xf = tξ(t). At long times (t� 1), we seek solutions of the form

H̃(y, t)= H̃0(y)+ · · ·, Ũ(y, t)= Ũ0(y)+ · · · and G̃(y, t)= G̃0(y)+ · · ·, (4.15)

and assume that t dξ/dt � ξ . Substituting these into the governing equations, we
obtain expressions for H̃0, Ũ0 and G̃0 that are identical to solutions of (4.8)–(4.10).
In particular, these show that this leading-order expression for the reduced gravity
becomes comparable with the source condition when y∼ δ = ẋf /x

1/2
f .
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Within the inner region, we therefore adopt the spatial coordinate Y = y/δ and
construct the following leading-order expansions for the dependent variables:

h= (ẋ2
f xf

)1/2
H̄0(Y)+ · · ·, u= (ẋ3

f x−1
f

)1/2
Ū0(Y)+ · · ·, g′ = Ḡ0(Y)+ · · ·. (4.16)

This implies that to leading order, the governing equations are then given by

H̄0

2
− Y

2
H̄′0 + (H̄0Ū0)

′ = Ū0, (4.17)

Ḡ0H̄0 − 1
2

(
YḠ0H̄0

)′ + (Ū0Ḡ0H̄0

)′ = 0, (4.18)

(Ḡ0H̄2
0)
′ = 0, (4.19)

to which we add the source conditions Ū0H̄0Ḡ0 = ẋ−5/2
f and Ḡ0 = 1 at Y = 0.

Immediately, we note that we can match to the outer region to determine

Ḡ0H̄2
0 = k2. (4.20)

To complete the solution, we need to apply the boundary conditions at the source,
which is most easily accomplished by integrating (4.18) over the inner boundary layer.
This yields ∫ δµ

0
Ḡ0H̄0 dY +

[(
U − Y

2

)
Ḡ0H̄0

]δµ
0

= 0, (4.21)

where µ is a constant (µ < 0), and we anticipate that the leading-order matching
will be independent of µ. From matching the two asymptotic regions, we have
Ū0H̄0Ḡ0 = ẋ1/2

f 2k2 log(k3/δ
µ+1) (where k3 is a constant) and we evaluate the first term

of (4.21) to leading order by using (4.20) in a manner analogous to § 3.2, to find that

2k2 log(δµ)+ 2k2 log
k3

δµ+1
− 1

ẋ3
f

= 0. (4.22)

Substituting the leading-order expression for δ, we find that

xf (t)∼ t

(k2 log t)1/3
. (4.23)

The constant k2 can be determined by solution of the boundary value problem
(4.8)–(4.10), illustrated in figure 12. As before, a power series of the form (4.6)
at y = 1 determines three boundary conditions, but introduces one undetermined
coefficient multiplying the non-integer powers of s (we now have λ = 1/2). The
boundary condition U→ 0 as y→ 0 closes the system, and by a shooting method we
find k2 = 2.19 . . . for Fr0 = 1, CD = 0.

The similarity between the long-time asymptotic growth rate (4.23) and current
length xf found from numerical solution of the governing equations is illustrated in
figure 11.

5. Summary and conclusions
We have studied a model for gravity currents that combines depth-integrated

conservation equations for the current with an empirically determined model of fluid
entrainment that is parameterized by the bulk Richardson number. We have calculated
long-time similarity solutions of this model, corresponding to a current driven by
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FIGURE 11. The dimensionless front position xf as a function of time for an entraining
density current generated by a source of constant flux, with a constant entrainment coefficient
(ψ = 0), determined from time-dependent numerical solutions of the governing equations
(solid line). The long-time asymptotic solution given by (4.23) is indicated by a dashed line.
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FIGURE 12. Solution of the outer similarity equations in the case of a constant entrainment
coefficient and constant buoyancy flux. The solid line indicates H, the dotted line U and the
dashed line GH2.

either an instantaneous release, or by a constant flux, of dense fluid. In both cases, we
find that the effects of mixing are most significant close to the front of the current,
where its motion is retarded and its depth increased. Close to the rear, in contrast,
exhibits relatively little entrainment. This leads to a two-region structure, in which
scalings close to the back of the current differ from those near the front. In currents
caused by an instantaneous release, the long-time solution is a similarity solution of
the second kind, with current length scaling as tγ , where γ is a weak function of
the entrainment parameterization; in particular, if E = E0/(1 + ψRi), the exponent
depends on ψ . With Fr0 = 1 and CD/E0 = 0, for ψ = 27, the value determined by
the experimental data, we find that xf ∼ t0.447. In currents caused by a constant flux of
buoyancy, the length of the similarity solution scales as t4/5. Both of these solutions
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are distinct, in solution structure and in growth rate, from the solutions obtained if
entrainment is either neglected or is considered to be independent of the Richardson
number.

In the non-entraining buoyancy-inertial regime, the Froude number condition at
the current front, together with the global buoyancy (2.7) or (2.9), are sufficient to
construct a ‘box model’ that captures the temporal evolution of the flow (Dade &
Huppert 1995). In these non-entraining currents, the frontal Froude number condition
plays a crucial role in determining the flow evolution, which is one reason why box
models have been successful. In the entraining regime, however, the front exerts a
much weaker role on the overall structure of the flow in entraining currents than
it does in non-entraining currents, leading to only relatively minor variations in the
exponent of the spreading rate (figure 5a). The scalings in the outer region, where
the frontal Froude number is applied, are different from those in the inner region,
where the dominant contribution to the total buoyancy originates, precluding the use
of a conventional box model. The existence of a similarity solution of the second
kind for entraining ‘lock-release’ currents, and the consequent determination of current
scalings through an eigenvalue problem, is additional evidence that simple box models
or dimensional arguments are insufficient to calculate the scalings in the entraining
regime.

Our addition of entrainment to shallow water gravity current models is motivated
by the observation that, for currents in the buoyancy-inertia similarity regime, the
effect of entrainment becomes increasingly important over time. In currents caused
by a release of a finite volume of dense fluid, we therefore predict a transition
from the buoyancy-inertia regime (Hoult 1972) to a new entraining regime in which
xf ∼ t0.447. Rottman & Simpson (1983) present results from laboratory experiments
(their figure 12) which show three distinct phases of gravity current propagation: an
initial adjustment phase where xf ∼ t, followed by a buoyancy-inertia phase where
xf ∼ t2/3, followed by a viscous self-similar phase where xf ∼ t1/5. From the results
obtained in this paper, we propose the existence of a fourth regime, between the
buoyancy-inertia and viscous self-similar phases, in which entrainment is important
and xf ∼ t0.447, which is only attained if the current is large enough for the onset of
viscous forces to occur later than the onset of entrainment.

A consequence of the relatively late onset of entrainment effects is that observations
of the flow structures that we describe may be difficult to obtain in laboratory
experiments, especially given the care required to obtain quantitative experimental
measurements of the entrainment rate. Nevertheless, with verification of our results
in mind, we describe in appendix A how depth-averaged variables h, u and g′ relate
to the three-dimensional velocity and concentration fields that may be obtained from
experimental measurements or fully three-dimensional numerical simulations.

The ‘head’ of a gravity current has long been recognized as an important component
of the flow, both in influencing flow dynamics through a constant Froude number
condition, and as a region in which the majority of fluid entrainment occurs. Rather
than specifying in our model that entrainment occurs only near the flow front, we
have taken the approach of applying a single model (2.13)–(2.15) throughout the
entire current. We find that a region near the flow front, with properties distinct
from the bulk of the current and consistent with experimental observations of gravity
current heads, emerges in the solution of this model. In particular, at late times
and for realistic values of ψ , the Richardson number is of order unity only near
the front of the current, in both currents caused by a constant flux and in those
caused by an instantaneous release. The entrainment coefficient is therefore close to its
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maximum value only near to the current front, a feature in agreement with laboratory
experiments (Hallworth et al. 1996).

Finally, we remark that the results from this study reinforce the need for
experiments at sufficiently large scale to reveal the effects of entrainment on the
propagation of gravity currents. Our results are built upon a simple, but widely
used, model of entrainment. Implicitly assumed is that the density of fluid within
the current remains vertically well mixed, and this requires sufficiently vigorous
turbulent fluctuations. As the magnitude of the turbulence wanes, we anticipate that
an internal stratification develops within the gravity current and this requires a new
class of model to capture the developing features. Some aspects of this effect are
reproduced in the multi-layer models of Arita & Jirka (1987), Sorgard (1991) and
Hogg, Hallworth & Huppert (2005), although these were developed for situations with
a co- or counter-flowing ambient. Nevertheless, they offer some interesting insights
and may be valuable for future developments of models of entraining gravity currents.
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Appendix A. Derivation of the depth-integrated model
For gravity currents driven by density differences due to a dissolved solute, the

mean solute concentration c? (averaged over turbulent fluctuations) is governed by the
equation

∂c?

∂t
+ (u? ·∇)c? =∇ ·F, (A 1)

where u? = (u?,w?) is the mean flow velocity and F represents the flux of solute due
to turbulent fluctuations (we assume that the Péclet number is large enough for all
mixing at the scale of the current to be due to turbulence). Assuming that variations
in the mean flow variables occur on much longer horizontal length scales than vertical
ones, and therefore that the horizontal component of the Reynolds flux is much smaller
than the vertical, reduces (A 1) to

∂c?

∂t
+ (u? ·∇)c? = ∂F

∂z
, (A 2)

where F is the z-component of F. We introduce the function h(x, t), where z = h will
represent the surface of the flow. Considering h for now to be an arbitrary positive
function, integrating from z = 0 to z = h and applying the boundary condition of no
flux through the base of the flow z= 0 gives

∂

∂t

[∫ h

0
c? dz

]
+ ∂

∂x

[∫ h

0
u?c? dz

]
=
{

c?
(
∂h

∂t
+ u?

∂h

∂x
− w?

)
+ F

}
z=h

. (A 3)

Integrating the equation for conservation of mass for incompressible flow, ∇ · u? = 0,
gives

∂

∂x

[∫ h

0
u? dz

]
+
{
−u?

∂h

∂x
+ w?

}
z=h

= 0, (A 4)
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which simplifies (A 3) to

∂

∂t

[∫ h

0
c? dz

]
+ ∂

∂x

[∫ h

0
u?c? dz

]
= c?

{
∂h

∂t
+ ∂

∂x

[∫ h

0
u? dz

]
+ F

c?

}
z=h

, (A 5)

where, physically, the right-hand side represents the mean flux of solute through the
interface z= h(x, t). We now specify that, since h represents the surface of the current,
this flux is zero, resulting in the two constraints on h:

∂h

∂t
+ ∂

∂x

[∫ h

0
u? dz

]
=−

(
F

c?

)
z=h

, (A 6)

∂

∂t

[∫ h

0
c? dz

]
+ ∂

∂x

[∫ h

0
u?c? dz

]
= 0. (A 7)

The equation for conservation of mean fluid momentum is

ρ

(
∂u?

∂t
+ (u? ·∇)u?

)
+∇p− ρg=∇ · (ρR) , (A 8)

where g = (0, g) is the gravity vector and the tensor ρR is the momentum flux due to
turbulent fluctuations; we assume that the Reynolds number is sufficiently large for the
molecular viscosity to be negligible. The fluid pressure is denoted by p and the fluid
density by ρ, which are related to solute concentration through

ρ(x, z, t)= ρ0 + ρ1c?(x, z, t). (A 9)

Supposing as before that the horizontal length scale of the flow is much greater than
the vertical, and also that the density differences due to solute concentration are small,
i.e. cρ1� ρ0, the horizontal and vertical components of (A 8) simplify to

∂u?

∂t
+
(

u?
∂

∂x
+ w? ∂

∂z

)
u? =− 1

ρ0

∂ p̃

∂x
+ ∂R

∂z
, (A 10)

0=− 1
ρ0

∂ p̃

∂z
+ ρ1c?

ρ0
g, (A 11)

where R = Rxz and p̃ = p + ρ0gz. Integrating (A 11) with the boundary condition that
the p tends to its ambient hydrostatic value −ρgz as z→∞ gives

p̃= ρ1g
∫ ∞

z
c? dz. (A 12)

Integrating (A 10) in z, and using (A 6) then gives

∂

∂t

[∫ h

0
u? dz

]
+ ∂

∂x

[∫ h

0
u?2 dz+ gρ1

ρ0

∫ h

0

∫ ∞
z

c? dz′dz

]
=
[(

R

u?
− F

c?

)
u?
]z=h

z=0

. (A 13)

We now suppose that c and u take the similarity form

c?(x, z, t)= c(x, t)C(η), u?(x, z, t)= u(x, t)U(η), (A 14)

where η = z/h(t) and C and U are functions that represent the vertical structure of
the current. Without loss of generality, we specify that

∫ 1
0 C dη = ∫ 1

0 U dη = 1, which
reduces (A 6), (A 7) and (A 13) to

∂h

∂t
+ ∂

∂x
(hu)= we, (A 15)
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∂

∂t

(
hg′
)+ kuc

∂

∂x

(
hug′

)= 0, (A 16)

∂

∂t
(hu)+ kuu

∂

∂x

(
hu2
)+ (kc1 + kc2)

∂

∂x

(
g′h2

2

)
=
[(

R

u?
− F

c?

)
u?
]z=h

z=0

, (A 17)

where we = F/c?z=h, the reduced gravity, g′, is defined by g′ = gρ1c/ρ0, and the shape
factors

kuu =
∫ 1

0
U2 dη, kuc =

∫ 1

0
UC dη, kc1 = 2

∫ 1

0
ηC dη, kc2 = 2

∫ ∞
1

C dη (A 18)

are constants. We select h so that a negligible proportion of the buoyancy lies
above h = 1, which implies kc2 � kc1 . The value of the shape factors may play a
significant role in determining the behaviour near a current front in which h→ 0
(Hogg & Pritchard 2004). However, for simplicity we set the shape factors kuc, kc1
and kuu to unity, an assumption supported by measurements of experimental turbidity
currents (Parker et al. 1986). If the Schmidt number (or Prandtl number, for currents
driven by temperature-induced density differences), is unity, the Reynolds fluxes for
concentration F and velocity R are equal, when normalized with respect to the
concentration and velocity that they respectively transport, and the source term on
the right-hand side of (A 17) is zero. If the Schmidt or Prandtl number is not unity, by
analogy with the entrainment hypothesis (Turner 1986) we take the relevant velocity
scale in the fluxes R and F to be u, and thus obtain a right-hand side for (A 17) of
the form −CDu|u|, where CD is assumed to be a constant. This term represents drag
caused by effects other than the entrainment of quiescent ambient fluid, in particular
basal drag.

Appendix B. Early-time effects of entrainment on non-entraining similarity
solutions

In this appendix, we analyse the early-time deviations of the motion of an
entraining gravity current from the non-entraining similarity solutions that capture
the motion governed by a balance between fluid inertia and buoyancy. In terms of the
dimensionless variables introduced in § 2, these expression are formally valid when
t� 1, with appreciable entrainment occurring on a time scale t = O(1). Our methods
here for deriving these deviations from the leading-order solutions follow closely those
developed in the context of particle-driven currents (Hogg, Ungarish & Huppert 2000;
Harris, Hogg & Huppert 2001) or drag-affected flows (Hogg & Woods 2001).

B.1. Currents with constant buoyancy
The similarity solution in the absence of entrainment during the inertia-buoyancy phase
of the motion was given by Hoult (1972):

h= h0(x, t)= t−2/3H0(y0)= K2

9t2/3

(
y2

0 − 1+ 4

Fr2
0

)
, (B 1)

u= u0(x, t)= t−1/3KU0(y0)= 2Ky0

3t1/3
, (B 2)

xf = xf 0(t)= Kt2/3, (B 3)

where y0 = x/xf 0 and K = (27Fr2
0/(12− 2Fr2

0))
1/3

. This similarity solution represents
the asymptotic solution of the motion from lock-release and other initial conditions
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(see, e.g., Hogg 2006; Mathunjwa & Hogg 2006). We seek the perturbation to this
solution due to the effects of entrainment. It was identified in § 2 that entrainment
effects are no longer negligible and begin to influence the motion when t4/3 = O(1) in
terms of the dimensionless variables. We deduce, therefore, that the perturbation to the
inertia-buoyancy similarity solution (B 1)–(B 3) is proportional to t4/3 and accordingly
write

h= t−2/3H0(y0)+ t2/3H1(y0)+ · · ·, u= K
(
t−1/3U0(y0)+ tU1(y0)+ · · ·

)
, (B 4)

g′ = 1+ t4/3G1(y0)+ · · ·, xf = xf 0(t)+ KX1t2 + · · ·, (B 5)

where the perturbation functions H1(y0), U1(y0), G1(y0) and the constant X1 are to be
determined. Substituting these expansions into the governing equations (2.14)–(2.15)
and balancing terms in equal powers of t in the regime t� 1 leads to

4
3

H1 + (H0U1)
′ = KU0

1+ ψRi0
, (B 6)

5
3

U1 + 1
K2

(
H′1 + G1H′0 +

1
2

H0G′1

)
=−KU2

0

H0

(
1

1+ ψRi0
+ CD

E0

)
, (B 7)

G1 =−KU0

H0

1
1+ ψRi0

, (B 8)

where Ri0 = H0/(KU0)
2. These linearized equations governing the perturbation to the

similarity solution must be supplemented by boundary conditions. First, we enforce no
flow at the rear boundary x = 0, which implies that U1(0) = 0. At the front of the
current, we require for kinematic consistency that U1(1) = (4/3)X1, and the dynamic
condition (2.10) then implies that

4K2G1(1)+ 9Fr2
0H1(1)+

(
8
3Fr

2
0 − 32

)
K2U1(1)= 0. (B 9)

This system (B 6)–(B 8) and associated conditions is therefore a boundary value
problem for H1(y0) and U1(y0), which may be readily solved numerically. We plot
the solution for ψ = 27, Fr0 = 1, CD/E0 = 0, and ψ = 27, Fr0 = 1, CD/E0 = 0.1
in figure 13(a). Two universal effects of entrainment at early times, brought out
through these perturbations, are that the reduced gravity is diminished and the
motion is slowed. The reduction in density difference between the current and the
surroundings is largest close to the front; this arises because the Richardson number
of the flow monotonically decreases along the length of the current, reaching a
minimum value at the front, where the mixing is maximized. The flow height is
increased along the entire current when CD/E0 = 0, reflecting the increase in current
volume due to entrainment, but for sufficiently large basal drag, including the case
CD/E0 = 0.1, a region close to the front is reduced in height as the current develops
a streamwise pressure gradient to sustain its motion. The perturbation to the front
position X1 = −0.00204 for CD/E0 = 0 and X1 = −0.00642 for CD/E0 = 0.1. This
indicates that the expansion of xf (B 5) becomes non-asymptotic at t ≈ 100 (for
CD/E0 = 0) or t ≈ 30 (for CD/E0 = 0.1), reflecting the validity of this expansion at
early times only.

B.2. Currents due to a constant buoyancy flux
The similarity solutions for a current generated by a constant-flux source of buoyancy
in the absence of entrainment and during the inertia-buoyancy phase of the motion
were given by Gratton & Vigo (1994), and depend on the Froude numbers at the front
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FIGURE 13. The form of the early-time perturbations to the non-entraining similarity
solution resulting from entrainment and drag, showing H1(y0) (solid line), U1(y0) (dotted
line) and G1(y0) (dashed line), for ψ = 27, Fr0 = 1, and CD/E0 = 0 and 0.1 In (a), the
perturbations for a constant total buoyancy are shown; in (b), the perturbations are to the
similarity solution with a constant buoyancy flux.

and the back of the current. The simplest situation is that these are equal, and the
velocity and height fields are both constant:

h= h0(x, t)= Fr−2/3
0 , u= u0(x, t)= Fr2/3

0 and xf = xf 0(t)= Fr2/3
0 t. (B 10)

In terms of this solution, the Richardson number is constant Ri0 = Fr−2
0 . We now

seek perturbations to this solution due to the effects of entrainment, which in terms
of the dimensionless variables occurs when t = O(1). Thus we seek the form of the
perturbation by writing

h= Fr−2/3
0 + tH1(y0)+ · · ·, u= Fr2/3

0 + tU1(y0)+ · · ·, (B 11)

g′ = 1+ tG1(y0)+ · · ·, xf = Fr2/3
0 t + X1t2 + · · ·, (B 12)

where the perturbation functions H1(y0), U1(y0), G1(y0) and the constant X1 are to be
determined. Substituting these expansions into the governing equations (2.14)–(2.15)
and balancing terms in equal powers of t in the regime t� 1 leads to

Fr−4/3
0 U′1 + (1− y0)H

′
1 =

Fr2/3
0

1+ ψRi0
− H1, (B 13)

(1− y0)U
′
1 + Fr−2/3

0 H′1 +
1
2
Fr−4/3

0 G′1 =−
CD

E0
Fr2

0 −
Fr2

0

1+ ψRi0
− U1, (B 14)

(1− y0)G1 =− Fr2
0

1+ ψRi0
− G1. (B 15)

This system is solved subject to the following boundary conditions. First, the reduced
gravity at the source is imposed and so the perturbation must vanish: G1(0) = 0. The
buoyancy flux is imposed at source, which implies that

Fr2/3
0 H1(0)+ Fr−2/3

0 U1(0)= 0. (B 16)
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At the front, the kinematic condition implies 2X1 = U1(1) and the Froude number
condition leads to

2Fr2/3
0 U1(1)= Fr2

0

(
Fr−2/3

0 G1(1)+ H1(1)
)
. (B 17)

This system is readily integrated to find the perturbation functions and the value X1. In
fact, it is straightforward to show that H1, U1 and G1 are linear functions of y0, and for
the case Fr0 = 1 we find

H1 =−
(

5CD

6E0
+ 1

4(1+ ψ)
)

y+ CD

2E0
+ 3

4(1+ ψ), (B 18)

U1 =
(

CD

3E0
+ 1

2(1+ ψ)
)

y− CD

2E0
− 3

4(1+ ψ), (B 19)

G1 =− y

1+ ψ (B 20)

and X1 =−CD/[12E0] − 1/[8(1+ ψ)].
These profiles are plotted in figure 13(b), again for ψ = 27, CD/E0 = 0 and

CD/E0 = 0.1. As with the perturbations to similarity solutions with constant buoyancy,
the current velocity and reduced gravity are decreased along the length of the
current (with the greatest dilution occurring at the front) and the current height is
increased everywhere for sufficiently small values of CD/E0 but decreased near the
current front for larger CD/E0. These perturbations bring out many of the features
of numerical time-dependent solution (figure 7) at very early times. As with the
perturbations to currents generated by an instantaneous release of dense fluids, the size
of the perturbation to the current front position, X1 = −0.00700 for CD/E0 = 0 and
X1 = −0.0192 for CD/E0 = 0.1, means that the expansion of xf (B 12) becomes non-
asymptotic at t ≈ 30. This is evident in the numerical solutions of the time-dependent
equations (figure 7), where for t & 20 features of the entraining similarity solution
not present in the early-time perturbation, such as the peak in h at the front, become
increasingly evident.

Appendix C. Currents generated by a continuous source with constant
entrainment (ψ = 0): outer solution in the region y� 1

Rearranging (4.10) in terms of H and GH2, and neglecting derivatives of GH2 (since
we suspect that GH2→ K, a constant, as y→ 0),

(U − y)H′ = 1
2 (U − H) (C 1)

and (4.8) then becomes

HU′ = U − H − (U − y)H′ = 1
2 (U − H) . (C 2)

Defining V = U/y and Θ = H/y− 1/2, these give

dV

dΘ
=

(V − 1)

(
−VΘ − 1

4
− Θ

2

)
(

V + 1
2

)(
−VΘ + 1

4
+ Θ

2

) , (C 3)
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from which we obtain

V = 1
4Θ
− 1

2
+ 8Θ + · · ·. (C 4)

Equation (C 1) then becomes the separable ODE

yΘ ′ =
−VΘ + 1

4
+ Θ

2
V − 1

= 4Θ2 − 8Θ3 + · · ·, (C 5)

which, integrating and rearranging for Θ , gives

Θ =− 1
4 log (k1/y)

+ · · ·, (C 6)

where k1 is the constant of integration. Substituting for H and V , (C 4) and (C 6) give
the result (4.11)–(4.13).
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