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a b s t r a c t

Mechanical metamaterials with negative stiffness and negative Poisson’s ratio are exciting prospects
for advanced material design. A plastic column with a series of periodically-spaced holes exhibits both
of these properties when buckled under compression. In this paper, the behaviour of such a column
under compression is measured experimentally and described with a simple mathematical model.
This model predicts the compression, buckling and post-buckling behaviour of the entire column from
the mechanical response of the thin ligaments of material that form the column’s microarchitecture
to compression, rotation and shear forces, which are characterised experimentally, The softening
behaviour in holey columns beyond the critical level of compression for pattern transformation is
shown to be due to material constitutive nonlinearities in the rotation and shear response of the
microarchitecture. Geometric perturbations to the columns can cause the observed pattern to change,
but result in approximately the same force–displacement measurements as for the column with perfect
geometry. This approach provides a useful framework to study systems where both geometric and
material nonlinearities underpin observed phenomena.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The extraordinary properties of mechanical metamaterials are
ictated by the deformation of their microarchitecture. Typically,
hese systems are soft, and their macromechanics are assumed
o be governed by the nonlinear structural geometry generated
y a repeating microarchitecture which deforms in a reversible
ay. In recent years, however, tailoring of material nonlinearities
as unlocked additional functionality. Metamaterials manufac-
ured from complex fluids are a prime example. Viscoelastic
etamaterials exhibit strain-rate dependence [1,2], have tem-
erature dependent properties that enable a greater degree of
ost-fabrication tunability [3], and can even improve sensory
erception [4]. Metamaterials made from dense suspensions can
witch between shear-thickened, high-viscosity and dethickened,
ow-viscosity states in response to acoustic actuation, and be
ngineered to display negative viscosity [5]. Granular metama-
erials can develop rheological ‘point’ defects [6] that affect wave
ropagation through them.
In some instances, a sound understanding of how material

onlinearities affect the deformation of a metamaterial is a pre-
equisite for their practical application. A case in point is the use
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of hard metamaterials as shock absorbers or crumple zones [7,8],
i.e., structures that are designed to deform plastically and absorb
mechanical energy in the process [9]. Widespread adoption of
metamaterial designs for crumple zones in the automotive indus-
try, for example, will demand materials that are high strength
and resistant to degradation. Hard auxetic metamaterials [10],
in particular, offer great potential since they contract laterally,
rather than expanding, under compression; integral to their per-
formance are the irreversible deformations which occur when
applied stresses exceed the yield stress of the (meta)material and
result in a nonlinear material response to deformation.

Here, we describe how material nonlinearities alter the buck-
ling behaviour of the ‘holey column’, a quintessential class of
mechanical metamaterial containing a periodic array of circular
holes (Fig. 1a). Holey columns and other cellular solids of the
same type exhibit negative Poisson’s ratio behaviour: beyond a
critical compressive strain, the columns buckle, and the holes
undergo a pattern transformation from circular to neighbour-
ing, orthogonal ellipses that results in lateral contraction at the
macroscale (Fig. 1b, see also [10,11]). One of the early examples
of an artificial, mechanical metamaterials [11–17], they remain a
cornerstone of research in the field because their simple geome-
try permits analytical progress and their macroscopic properties
can be easily tailored through e.g., alterations to the hole size
and spacing [16,18]. Traditionally, research focused on the role of
geometrical nonlinearities on pattern transformation and associ-
ated emergent properties, while the material properties of holey
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Deforming metamaterials with constitutive nonlinearities. a–b. A holey column (made from polylactic acid (PLA) using a 3D printer) under compression.
or sufficient applied load, buckling of the thin ligaments surrounding holes induces pattern switching (from circles to orthogonal ellipses). c–f. Schematic diagrams
f our deconstructed model system comprising rigid joints and flexible spring-like ligaments that are connected in series and orientated in the horizontal (purple
ox) and vertical (green box) components. Each rigid piece is defined with the following degrees of freedom {xij, yij, θij}. d. The coordinates of the left-edge and
ight-edge of a horizontal ligament are {Xh

j , Y h
j } and {X̃h

j , Ỹ h
j }, respectively. e. Illustration of the transformation from Cartesian coordinates to the frame of reference

n which compression of each ligament occurs along one principal axis and shearing along the other, for a horizontal component. f. Similarly to figure d, the top
nd bottom edges of vertical ligaments are defined by {Xv

ij , Y
v
ij } and {X̃v

ij , Ỹ
v
ij }, respectively.
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tructures were either assumed linearly elastic, or remained at
he periphery of scientific exploration [19–22].

The novelty in our approach is to consider both geometrical
onlinearities and nonlinear constitutive relations between de-
ormations and applied loads. The model presented here links the
onlinear mechanics of the microarchitecture to the macroscale
ehaviour of non-elastic holey columns. Although the influence
f nonlinearities on the onset of pattern transformation is small,
hey can significantly affect the post-buckling bifurcation struc-
ure. Our findings shed light on recent experimental reports
f metamaterials [10] made from common metals and plas-
ics that exhibit both a negative Poisson’s ratio and negative
tiffness following pattern transformation (i.e., they are ‘doubly
egative’ [23]).
Metamaterials that demonstrate negative stiffness [24], neg-

tive compressibility [25] and other advanced functionalities –
uch as tunable, multistage [26] and multi-directional [27] stiff-
ess – offer great potential for energy absorption and vibration
solation applications, but typically their design has relied on
eometric nonlinearities that arise during deformation. Extreme
amping and negative stiffness have been reported in composite
aterials that contain either negative compressibility inclusions
ithin a stiff matrix [28–32] (where elastic energy is stored in
he inclusions) or microscale, bucklable structures embedded in
viscoelastic matrix [33] (where energy is instead dissipated by
mplifying linear strains in the host material), suggesting that
egative stiffness is a common property of composite materials
ith nonlinear constitutive relations.
Herein, we show that non-compound metamaterials can also

xhibit negative stiffness, providing their material properties are
onstitutively nonlinear, and reveal the post-buckling bifurca-
ion structure responsible for the emergent negative stiffness.
irst, we characterise the micromechanics of our metamaterial,
2

hard holey column, by measuring the deformation of its in-
ividual structural elements to applied compression, shear and
otation. We then simulate the behaviour of our columns under
ompression using a network model with nonlinear constitutive
ehaviour extracted from measurements of structural elements,
nd compare these simulation results to experiments. Finally, we
iscuss the role of nonlinear rotation and shearing, and that of
eometrical imperfections, on the magnitude of peak force at the
nset of buckling and the post-buckling negative stiffness.

. Experiments

.1. Materials and methods

Compressive testing was performed on holey columns (Fig. 1a)
nd microstructural elements made from plastic. All samples
ere fabricated in polylactic acid (PLA) plastic (VeroBlue, Strata-
ys Ltd.) using a 3D printer (Objet30 Pro, Stratasys Ltd). The
easured Young’s modulus of the PLA was 2.0GPa.
Holey columns consisted of repeated structural elements of

alf-length l = 4.05mm, half-width w = 4.05mm and depth
= 12.7mm, shown in Fig. 2a, so that the samples had a hole
iameter D = 7.7mm, and the hole centres were 2× l = 8.1mm

apart. A length lends = 12mm of solid material, free from holes,
was left on the top and bottom of the structure, and placed inside
custom-built adaptors to prevent sliding of the samples during
testing. The error on all geometric parameters was within 0.5% of
the numbers quoted above.

The structural elements used to measure the micromechanical
response to shear and rotation are shown in Figs. 2a.ii & a.iii.
The deforming parts of the microstructures were geometrically
identical to the one depicted in Fig. 2a.i., i.e. their dimensions
were the same as found in the microarchitecture of our holey
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Fig. 2. Micromechanics. a. Schematic illustration of (i) the basic structural element of depth d, width 2 × w and length 2 × l that repeats throughout the column,
nd experimental samples used to measure the (ii) shear and (iii) rotational response of the microarchitecture [10]. Schematic illustration of experiments used for
easuring the (iv) compression, (v) shear and (vi) rotation response of the basic structural elements. b. Half of the measured force, F compress/2, as a function of
ondimensional vertical displacement, δ/H0 , from compression experiments as in a.iv with holey columns of initial height, H0 , and N = 13 holes prior to buckling;
xperimental data is fitted with Eq. (2). c. Measured force, F shear , as a function of nondimensional vertical displacement, δ/l, from shear experiments as in a.v with
amples from a.ii; experimental data is fitted with Eq. (4). d. Measured torque, T rotate

= lF rotate , as a function of angular rotation, ϑ = δ/l, in rotation experiments as
n a.vi with samples from a.iii; experimental data is fitted with Eq. (6). Figures b–d show both raw (faint lines) and averaged (dashed line) experimental data; fits
solid lines) are done with the latter.
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olumns. However, the geometry outside the deforming region
as adapted to allow the elements to be attached to the struc-
ural testing station using custom-built adaptors, and then sub-
ected to these specific deformation modes (Figs. 2a.v & a.vi,
espectively).

Force–displacement data was acquired using a Universal Test-
ng System (5569, Instron) by compressing samples at rates in the
ange of 0.001–8.5 mm/s. Five experimental runs were repeated
er set of parameters, and a new sample was produced for each
xperimental run since each sample deformed plastically during
esting. For each level of displacement, the force measured from
ultiple experimental runs is averaged, with the error on each
oint corresponding to the standard deviation of the data.

.2. Micromechanics

The pre-buckling deformation of compressed holey columns is
rimarily accommodated through the compression of vertically-
rientated structural elements, shown in Fig. 2a.i. In order to
xtract the individual response of these elements to compression,
e assume that prior to buckling, the holey column is com-
rised of two stacks of such structures connected in parallel (see
3

ig. 2a.iv). Force–displacement measurements, e.g., in Fig. 2b for
holey column with N = 13 holes, suggest a nonlinear response
o compression. Hence, the compression energy of an individual
tructural element depends on the amount of compression δ as

(δ) = C2δ2 + C3|δ|3 + C4δ4, (1)

here C2 is the Young’s modulus for small displacements. Prior to
uckling, this compression energy determines the force–displa-
ement behaviour of the entire column, with the force applied
hen a holey column with N holes is compressed by a distance
being
compress

= 2C ′(δ/N). (2)

xperimental measurements of the force versus displacement
hown in Fig. 2b for N = 13 are typical for holey columns prior
o buckling, and are used to extract C2, C3 and C4 by fitting (2)
o the averaged experimental data in Fig. 2b. The results of this
itting are also shown in Fig. 2b. The compression coefficients C2,
3 and C4 are determined to be 550.6 ± 100.7 N/mm, 23.18 ±

.76 kN/mm2 and −1293.4 ± 6.5 kN/mm3, respectively, and are
sed in the theoretical model below to predict the post-buckling
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ehaviour of the holey column with N = 13 holes, and the pre-
and post-buckling behaviours of columns with N ̸= 13 holes.

The energy of an individual structural element under shear
ust be, by symmetry, an even function, approximated here by

he first two terms of a power series,

(δ) = S2δ
2
+ S4δ

4. (3)

Thus, for a structural element subject to shear, the measured force
is related to displacement through

F shear
= 2S2δ + 4S4δ

3, (4)

where the vertical displacement δ is applied as shown in Fig. 2.a.v,
and the corresponding force F shear is measured. The resulting
force–displacement data for different experiments and their av-
erage are shown in Fig. 2.c. As before, the polynomial (4) is fitted
to experimental data (Fig. 2.c), with coefficients S2 = 105.5 ±

1.7 N/mm and S4 = −740.9 ± 50.5 N/mm3.
The rotational (bending) energy of the structural elements

must also be an even function of the deformation. In experiments
(Fig. 2.a.vi) this is measured by applying a vertical displacement
δ and measuring the corresponding force F rotate, so the angle ϑ

can be approximated as δ/l, where, as before, l is the undeformed
half-length of the microarchitecture. As with shearing, the first
two terms of a power series approximate the bending response,

R(ϑ) = R2ϑ
2
+ R4ϑ

4, (5)

such that the torque on the tested structural element is related
to the measured force–displacement via

T rotate
= F rotatel = 2R2ϑ + 4R4ϑ

3
= 2R2

δ

l
+ 4R4

(
δ

l

)3

. (6)

Again, coefficients R2 and R4 are obtained by fitting (6) to the ex-
erimental force–displacement data (Fig. 2.d), resulting in R2 =

42.07 N mm/rad and R4 = −388.34 N mm/rad3, respectively.

. Theory

We model the holey columns as series of rigid sections that
re connected by thin flexible ligaments (Fig. 1.c–f), an approach
ustified by the thin hourglass-shaped region of flexible material
etween adjacent holes [20]. Such ligaments can be modelled by
onstitutively linear rotation and translation springs [22,34], but
ere, to recreate the post-buckling softening observed in hard,
oley columns, we must turn to models of ligament deformation
ith a nonlinear constitutive response.

.1. The elastic column model

The total elastic energy of the column is a sum over the elastic
nergies of each flexible ligament, each of which has contribu-
ions from compression, shear and rotational deformations of
hat ligament. In this subsection, these ligament deformations are
efined in terms of the position and rotation angle of each rigid
ection of the column. The total elastic energy (28) is written
n terms of these unknowns, which, when minimised, gives the
quilibrium states of the column.
The geometry of the holey column is described using a Carte-

ian coordinate system centred on the bottom hole of the column
Fig. 1c). The rigid sections are formed from the thick regions of
lastic material of half-length lij and half-width wij, centred at
xij, yij), where i= 1, 2 and 0 ≤ j ≤ N for the column with N
oles. Thus, the height of the column can be determined as

0 = li0 + 2
N−1∑

lij + liN , for i = 1 or i = 2. (7)

j=1

4

f the column is compressed by δ, then the total height of the
olumn changes to

= H0 − δ. (8)

The rotation of rigid segments is described by angles θij measured
nticlockwise from the vertical axis as illustrated in Figs. 1d & 1f.
There are N − 1 horizontally-oriented flexible ligaments in

otal (shown with blue springs in Figs. 1c & 1d). The deformation
f these ligaments is the difference in position between their left
nd right edges, which have coordinates

Xh
j = x1j + w1j cos θ1j,

Y h
j = y1j + w1j sin θ1j,

}
for 1 ≤ j ≤ N − 1, (9)

or the left-hand edge and

X̃h
j = x2j − w2j cos θ2j,

Ỹ h
j = y2j − w2j sin θ2j,

}
for 1 ≤ j ≤ N − 1 (10)

or the right-hand edge. The energy associated with the defor-
ation of the horizontally-oriented flexible ligaments is then

h
=

N−1∑
j

Eh(Xh
j − X̃h

j , Y h
j − Ỹ h

j , θ1j − θ2j; w1j, w2j), (11)

The total number of vertically-oriented flexible ligaments
shown with red springs in Figs. 1c & 1f) is 2 × N , and we refer
o each one of them using two indices (i, j). The deformation of
he (i, j)th ligament can be described using

Xv
ij = xij + lij cos θij,

Y v
ij = yij − lij sin θij,

}
for

1 ≤ j ≤ N − 1,
i = 1, 2,

(12)

or coordinates of its top edge, and

X̃v
ij = xij−1 − lij−1 sin θij−1,

Ỹ v
ij = yij−1 + lij−1 cos θij−1

}
for

2 ≤ j ≤ N,

i = 1, 2,
(13)

for coordinates of its bottom edge. The rigid sections next to
the boundaries of the holey column differ from the rest of the
rigid sections because they do not rotate, so the coordinates
of the vertically-oriented flexible ligaments adjacent to these
boundaries are

X̃v
11 = −w11 and X̃v

21 = w21,

Ỹ v
11 = 0 and Ỹ v

21 = 0
(14)

at the bottom boundary,

Xv
1N = −w1N and Xv

2N = w2N ,

Y v
1N = H − l1N and Y v

2N = H − l2N
(15)

at the top boundary, respectively. The energy associated with the
deformation of the vertically-oriented flexible ligaments can be
expressed as

Ev
=

2∑
i=1

N∑
j=1

Ev(Xv
ij − X̃v

ij , Y
v
ij − Ỹ v

ij , θij − θij−1; lij, lij−1). (16)

As the holey column deforms, each ligament can, in principle,
compress, shear and rotate, and we assume that the former
two types of responses decouple along the principal axes of the
individual rigid segments. Each segment is associated with its
principal coordinate system given by

u1j = x1j cos(φj) + y1j sin(φj), (17)

v1j = −x1j sin(φj) + y1j cos(φj), (18)
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y

2j = x2j cos(−φj) + y2j sin(−φj), (19)

2j = −x2j sin(−φj) + y2j cos(−φj), (20)

if the segment is on the right-hand side of the holey column,
respectively, where the (x, y)-coordinate system is rotated by an
angle

φj =
θ1j + θ2j

2
, (21)

see Figs. 1e. Thus, the edge coordinates of the horizontally-
oriented flexible ligament can be expressed as

Xh
j = Xh

j (x1j, θ1j; w1j)

= Xh
j (x1j(u1j, v1j, φj), θ1j; w1j)

= Uv(u1j, v1j, φj, θ1j; w1j),

and become

Xh
j (x1j, θ1j; w1j) = Uh

j (u1j, v1j, φj, θ1j; w1j),

Y h
j (y1j, θ1j; w1j) = V h

j (u1j, v1j, φj, θ1j; w1j),

}
for 1 ≤ j ≤ N − 1, (22)

for the left-hand side edge coordinates, and

X̃h
j (x2j, θ2j; w2j) = Ũh

j (u2j, v2j, φj, θ2j; w2j),

Ỹ h
j (y2j, θ2j; w2j) = Ṽ h

j (u2j, v2j, φj, θ2j; w2j),

}
for 1 ≤ j ≤ N − 1, (23)

for the right-hand side edge coordinates, respectively. Then the
energy associated with the deformation of the horizonta-
lly-oriented flexible ligaments can be rewritten as

Eh
=

N−1∑
j=1

C(Uh
j − Ũh

j ) + S(V h
j − Ṽ h

j ) + R(θ1j − θ2j), (24)

where C , S, R are contributions to the energy due to compression,
shear and rotation, defined in (1), (3) and (5), respectively. Sim-
ilarly, for the edge coordinates of the vertically-oriented flexible
ligament

Xv
ij = Xv

ij (xij, θij; lij)
= Xv

ij (xij(uij, vij, φj), θij; lij)
= Uv

ij (uij, vij, φj, θij; lij).

Hence, the top edge coordinates of the vertically-oriented elastic
ligament become

Xv
ij (xij, θij; lij) = Uv

ij (uij, vij, φj, θij; lij),
Y v
ij (yij, θij; lij) = V v

ij (uij, vij, φj, θij; lij),

}
for 1 ≤ j ≤ N − 1 & i = 1, 2, (25)

while the bottom edge coordinates become

X̃v
ij (xij−1, θij−1; lij−1) = Ũv

ij (uij−1, vij−1, φj, θij−1; lij−1),

Ỹ v
ij (yij−1, θij−1; lij−1) = Ṽ v

ij (uij−1, vij−1, φj, θij−1; lij−1),

}
for 2 ≤ j ≤ N & i = 1, 2, (26)

and the energy associated with the deformation of the
vertically-oriented flexible ligaments is

Ev
=

2∑ N−1∑
C(V v

ij − Ṽ v
ij ) + S(Uv

ij − Ũv
ij ) + R(θij − θij−1). (27)
i=1 j=1

5

Adding (24) and (27), we obtain the total energy of the holey
column

E = Eh
+ Ev. (28)

For each level of compression δ, the equilibrium states of the
holey column defined by the particular {xij, yij, θij} can be solved
for by minimising this energy, i.e.
∂E
∂ξ

= 0, (29)

where ξ = {xij, yij, θij}.

3.2. Numerical solution

Once formulated, the algebraic system (29) is solved using the
Newton–Raphson method, and parametric continuation is used to
compute equilibrium solutions for a range of compression δ. The
compression force is computed from a finite-difference derivative
of the energy associated with each equilibrium,

F =
E(δ + ∆δ) − E(δ)

∆δ
. (30)

lternatively, the force can be imposed by applying a weight F to
he top of the column (z = H). The energy of the holey column
28), is then

˜ = E + F × H, (31)

here the second term corresponds to the potential energy due
o the weight. In this formulation, F is imposed, and the com-
ression δ is an additional unknown that we solve for together
ith the column geometry ξ . Applying the method of Lagrange
ultipliers to (31), we again obtain the Eqs. (29), alongside a new
quation

∂E
∂δ

= F . (32)

As above, we then proceed to perform parametric continuation in
force.

Bifurcations are identified by monitoring when an eigenvalue
of the Jacobian of (29) changes sign during continuation. At a
bifurcation, perturbing the initial guess of the Newton–Raphson
solve with a small multiple of the corresponding eigenvector
allows continuation along a chosen solution branch.

3.3. Modelling geometric imperfections

The majority of our results are computed using holey columns
in which the structural elements that form them have the same
half-lengths {lij} = l and half-widths {wij} = w. In practice,
however, all mechanical metamaterials are inherently imperfect
because of limitations in the fabrication processes [35], so ac-
counting for geometric uncertainties is useful in their design
and characterisation [36]. Here, this is examined theoretically by
creating columns with lij = l + ϵρij and wij = w + ϵρ̃ij, where ρij
and ρ̃ij are randomly chosen factors for the columns lengths and
widths, drawn from intervals [−l, l] and [−w, w], respectively,
with a uniform probability distribution. These are scaled by the
scaling amplitude ϵ = 0.005, chosen to reflect the size of typical
imperfection in our experiments (Section 2.1). Their role was
studied using 50 imperfect columns.

4. Results

4.1. Macromechanics

The macromechanical response of holey columns to com-
pression is summarised in Fig. 3a, which shows how the
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Fig. 3. The macromechanics and observed buckling modes. a. The macromechanical response (i.e., measured force) of a holey, plastic column with N = 13 holes
o applied compressive strain ε = δ/H0 and observed buckling mode. The dashed line and errorbars represent the average and standard deviation of experimental
easurements, the solid black line represents numerical predictions for the perfect column while the shaded regions correspond to data obtained in 50 numerical
imulations with geometrical imperfections (with denser data regions being darker). Examples of predicted and observed states, pre- and post-buckling, are shown as
nsets and correspond to values of applied strain indicated by the red stars. Also indicated are the critical strain εcr and load Fcr for buckling obtained in simulations
ith the perfect column. b. The global orientation of holes, Θ , measured as a function of compressive strain shows how the trivial compression branch, Θ = 0,
ifurcates into two different alternating modes when ε = εcr . As in figure a, the solid black line is for the perfect column while faint markers show the influence
f geometrical imperfections on observed mode. c. The difference between the branches in figure b which correspond to different global hole orientations of the
erfect column, ∆Θ , as a function of compressive strain in the region close to the critical strain εcr above which ∆Θ < 0.
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easured force varies as a function of applied compressive strain
or columns with N = 13 holes. The mean of the experimental
ata and the corresponding errors are shown using dashed line
ith error bars, while the predictions of the theoretical model

rom Section 3.1 for the perfect column are illustrated with the
olid line. The pattern transition due to the column buckling is
haracterised by the peak in the measured force Fcr at the applied
ompressive strain εcr . The agreement between the experimental
nd theoretical curves is good, particularly in their overall shape,
ith the predicted values for the critical force and compressive
train to within 9% of each other. Perturbations to the sam-
le geometry make the bifurcation at εcr imperfect (shading in
ig. 3a), and decrease the peak stress by ∼5% for each percent
n the geometric perturbation, but otherwise do not dramatically
hange the force–strain relation of the system, compared to the
ase of a perfect column.
For representative values of the applied strain before and

fter the pattern transition, indicated with the star markers, also
hown are column states obtained experimentally and in our
odel with the perfect column. Again, the agreement between

he two is good, e.g. beyond the onset of buckling, the mid-
le (elliptical) hole is oriented vertically so that the vertical
igaments surrounding it are closer to each other than the hor-
zontal ligaments. An alternative buckled state with the mid-
le (elliptical) hole oriented horizontally, with a nearly identical
orce–displacement relation, is also predicted by the model. Both
uckled states can be traced by measuring the total rotation in the
olumn using a measure of the global orientation of holes that
s positive for the buckled state with the middle hole oriented
ertically, and negative for the buckled state with the middle
ole oriented horizontally, such as Θ =

∑N
k=1(−1)k(θ2k − θ1k).

ig. 3b shows the variation of Θ with the compressive strain near
he bifurcation point for the perfect column (solid line) and 50

mperfect columns (shaded regions). The pattern transition is not c

6

ymmetry-breaking, as both buckled states maintain both top-
ottom and left–right reflection symmetries of the undeformed
olumn. Indeed the two post-buckling branches are not perfectly
ymmetric, as shown in Fig. 3c where the sum ∆Θ of the top and
ottom branches for the perfect column from Fig. 3c is plotted.
or perfect columns with an odd number of holes, the buckling
ccurs through a transcritical bifurcation, with a nearby limit
oint [19], that for N = 13 occurs at a value of δ/H0 only ∼10−6%
ess than that of the bifurcation. The two buckled states follow
lmost identical force–displacement curves, though one has pos-
tive Θ and one has negative Θ . In practice, even tiny geometric
erturbations to the shape of the holey column (and likely other
xperimental perturbations not studied here), cause the bifurca-
ion to become imperfect, with either the positive or negative

branches of the buckled state connected to the compression
ranch. There is no significant difference in patterns observed in
mperfect columns compared to post-buckling patterns seen in
he perfect columns, with small (random) perturbations favouring
ne type of the pattern over another in any given compres-
ion run. However, both states are observed experimentally and
n numerics with imperfect columns with approximately equal
requency (see also the faint markers in Fig. 3b).

.2. Buckling threshold and post-buckling behaviour

The level of agreement between experiments and theory,
emonstrated in Fig. 3a for the force–strain curves of columns
ith N = 13 holes, was also seen for columns with a different
umber of holes. This is shown in Fig. 4 by plotting the peak force,
cr , and the corresponding compressive strain, εcr , and the slope
f the force–strain curve beyond the critical compressive strain,
F/∂ε, obtained experimentally and using the model with imper-
ect columns, as a function of the number of holes N in the holey

olumn. When extracting slope values, we fitted a straight line
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Fig. 4. Threshold for the onset of buckling and post-buckling behaviour. Critical: a. strain εcr and b. force Fcr for the onset of buckling; and c. post-buckling
lope of the force–strain curve ∂F/∂ε in hard, holey columns measured both experimentally (filled markers) and via simulations using imperfect columns (unfilled
arkers) as a function of the number of holes N . The inset in c. shows the region of the force–strain curve (between two dots) where the slope ∂F/∂ε is sampled,
sing N = 13 as an example. For long columns, N ≳ 15, the macromechanical conditions for buckling become independent of the number of holes, approaching the
heoretical limiting values of ε∞

cr = 0.062 and F∞
cr = 424.93 N (dashed lines).
Fig. 5. The influence of micromechanical stiffness and constitutive nonlinearity on macromechanics. Force–strain curves for holey columns with N = 13 holes
and varying: a. rotational stiffness R2; b. rotational nonlinearity R4; c. shear stiffness S2 and d. shear nonlinearity S4 , with their reference magnitudes given in
ection 2.1.
b
b

o the force–displacement measurements over a range of 0.05–
.07 mm in displacement beyond the critical value (an example
f this fitting procedure for typical experimental and numerical
ata, respectively, is shown in the inset of Fig. 4c, where the dots
ignify the regions where the fitting was performed). The quantity
F/∂ε is then extracted using the slope of the straight line. The
heoretical and experimental data is reported by averaging the
esults for 50 imperfect columns and five experimental samples,
espectively, with the error on each point corresponding to the
tandard deviation of the data. As N increases, so does ∂F/∂ε,
.e., post-buckling softening becomes weaker. On the other hand,
oth Fcr and εcr decrease with N approaching limiting values
∞
cr and ε∞

cr , respectively. They correspond the threshold for the
ocalised buckling in an infinite holey column: the force can be
ound using

∞
= 4 × 3 ×

R2
, (33)
cr l

7

see [10,20], and the stress ε∞
cr obtained by solving the implicit

Eq. (2) with this value of the force.

4.3. The role of rotation and shearing

4.3.1. Nonlinear rotation
The importance of ligament bending stiffness and nonlinear-

ity is demonstrated by varying coefficients R2 and R4 in (5)
(Fig. 5a,b). As before, we focus on the force–strain curves for the
perfect holey column with N = 13 holes.

In the limiting case of an infinite column, the magnitude
of R2 determines the peak force and strain, the former being
exactly proportional to R2 (33). The column with N = 13 holes
ehaves similarly, with the critical force changing approximately
y a factor of two with each doubling of the coefficient R2

(Fig. 5a). However, the post-bifurcation stiffness (the slope of
the force–displacement curve) does not change dramatically with
variation of R . Instead, the degree of post-bifurcation softening
2
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s significantly controlled by R4, the coefficient resulting from
onstitutive nonlinearity in ligament bending (Fig. 5b). In the case
f R4 = 0, the behaviour of the linear constitutive response
s recovered, and no softening is observed. Similarly, there is
o significant post-bucking softening in comparable hyperelastic
olumns [19], further demonstrating the importance of consti-
utive nonlinearities in rotation for the global response of holey
olumns.

.3.2. Nonlinear shearing
For a given displacement, the forces measured in the shearing

xperiments with individual structural elements in Fig. 3c are
arger than the corresponding rotational forces in Fig. 3d by a
actor of 10, resulting in significantly greater energy penalty to
hearing deformations. Thus, the deformations occurring during
uckling are primarily rotational, but the shear deformation of
igaments, parameterised by S2 and S4 from (3) also affects the
ehaviour of holey columns with finite number of holes (Fig. 5c,
). For example, variations in S2 have a weak influence on the
eak force, which for N = 13 holes decreases by less than 5%
hen S2 is changed by a factor of 2 (Fig. 5c). As in the case of rota-
ional response, the post-bifurcation behaviour of the columns is
argely unaffected by S2, but is dependent on S4 (Fig. 5d), though
his dependence is much less pronounced than the dependence
n rotational nonlinearity R4.
Overall, the results in Fig. 5 clearly demonstrate the need

for modelling both linear and nonlinear responses of individual
structural elements to different modes of deformation, empha-
sising in particular the importance of nonlinear terms for the
post-buckling behaviour of hard holey columns.

5. Conclusion

By linking the micromechanics of ligaments to compression,
shear and rotation with the macro-deformation of holey columns
under compressive load, we have demonstrated how constitutive
nonlinearities in individual structural elements translate to the
global response of this particular mechanical metamaterial. This
was done by building a modelling framework which was under-
pinned by experiments designed to quantify the micromechanical
response. Our model was then tested by comparison with ex-
periments on holey columns made from PLA plastic, a material
with nonlinear constitutive behaviour, as evidenced by nonlinear
response of the metamaterial under compression even prior to its
buckling.

While the pattern transition studied in this paper is very
robust, i.e., it occurs for perforated sheets and columns made from
a range of materials including viscoelastic fluids [14], rubbers [13]
or even metals [10], we clearly demonstrated the need for accu-
rately quantifying the constitutive properties of such materials
in order to predict the behaviour of holey structures quantita-
tively. In our study, both the onset of buckling (the critical strain
at which it occurs) and the post-buckling behaviour of holey
columns (force–strain curves) are strongly affected by material
nonlinearities. Hence, tuning nonlinear constitutive response of
structural elements in holey columns can also be used to ad-
just their global properties, such as the level of softening after
buckling.

Our holey columns are particularly sensitive to the response of
the microarchitecture to rotational deformation, which has strong
influence on the level of agreement between our simulations and
experiments in Figs. 3 and 4, though in columns of finite length
made from different materials this might be less pronounced.
Geometric imperfections, on the other hand, had relatively little
quantitative effect on the global response of the system. Our
finding illustrates why accurately quantifying responses of indi-
vidual structural elements to the standard modes of deformation
8

is crucial for the predictive capabilities of modelling frameworks
such as the one presented here, or in [22]. When quantifying
these responses, we have chosen the simplest forms of nonlin-
earities (i.e. polynomials) that fitted our experimental data. The
motivation behind such empirical approach was to use simple
mathematical expressions which are nevertheless asymptotically
valid, for example, in the limit of infinite columns with big
holes [20]. For structural elements with more complicated shapes
decoupling compressive, shear and rotational responses might
not be as easy. However, the modelling approach taken here
is an excellent starting point for exploring the role of constitu-
tive nonlinearities in metamaterials of the same class as holey
columns.
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