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Temporal micro-computed tomography (CT) allows the non-destructive quantification of processes
that are evolving over time in 3D. Despite the increasing popularity of temporal CT, the practical
implementation and optimisation can be difficult. Here, we present new software protocols that enable
temporal CT using commercial laboratory CT systems. The first protocol drastically reduces the need
for periodic intervention when making time-lapse experiments, allowing a large number of tomograms
to be collected automatically. The automated scanning at regular intervals needed for uninterrupted
time-lapse CT is demonstrated by analysing the germination of a mung bean (vigna radiata), whilst
the synchronisation with an in situ rig required for interrupted time-lapse CT is highlighted using a
shear cell to observe granular segregation. The second protocol uses golden-ratio angular sampling
with an iterative reconstruction scheme and allows the number of projections in a reconstruction to be
changed as sample evolution occurs. This overcomes the limitation of the need to know a priori what
the best time window for each scan is. The protocol is evaluated by studying barite precipitation within
a porous column, allowing a comparison of spatial and temporal resolution of reconstructions with
different numbers of projections. Both of the protocols presented here have great potential for wider
application, including, but not limited to, in situ mechanical testing, following battery degradation and
chemical reactions. Published by AIP Publishing. https://doi.org/10.1063/1.5044393

I. INTRODUCTION

X-ray micro-computed tomography (CT) has grown into
a popular tool for non-destructively examining the interior of
objects to micron scale resolutions, with excellent reviews
of the broad range of applications across material science,1

food technology,2 biology,3 and geosciences.4,5 With off-the-
shelf commercial micro-CT machines available for as little as
60 000 Euros, it has also become a widely accessible labora-
tory technique with an estimated 2000-3000 machines world-
wide.6 Maximising the scientific potential of these laboratory
machines is thus of high value.

While many of these machines are used for static 3D
observation of materials, they are being increasingly deployed
for temporal studies.7 As a non-destructive technique, CT
can be used to repeatedly acquire 3D images and thereby
follow changes to the internal structure of materials and com-
ponents during their manufacture (e.g., additive manufactur-
ing8 and powder processing9) or whilst they are performing
in service (e.g., under stress10 or during cracking11 and
fracture12).

In a dynamic process, the sample can be changed con-
stantly and so the relationship between the scan time and the
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rate of evolution of the sample is important. In practice, the
time taken for a CT scan is determined by the time needed
to acquire a sufficient number of projections of the sample
viewed from different angles as it is irradiated with x-rays.
These projections can then be reconstructed into a virtual vol-
ume known as a tomogram. Although synchrotron facilities
(frame rates up to 10 000 projections/s)13 and medical CT
scanners (frame rates up to 10 projections/s)14 can perform
fast scans, the scan times for laboratory machines are typi-
cally much longer (∼1 s–10 min per projection).15 These time
scales give rise to two strategies for data acquisition for in situ
temporal CT:16 (1) “Time-lapse CT,” which is directly anal-
ogous to time-lapse photography, involves collecting a series
of bursts of projections, where each burst is collected over a
time scale that is short relative to the whole process, and (2)
“Continuous streaming,” where projections are continuously
acquired whilst the sample evolves. In situ time-lapse CT can
be further categorised into “interrupted” and “uninterrupted.”
In the former case, the process governing the evolution of the
sample is “interrupted” (paused) whilst a scan is acquired.17

In the latter case, the acquisition time is much shorter than
the evolution time, allowing scans to be performed at specific
points but leaving the evolution “uninterrupted.”18 Finally,
when the rate of evolution of the sample is comparable
to the scan time, a continuous acquisition of projections is
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FIG. 1. The relationship between the evolution of the sample (blue curves) with the scan time (red) leads to different temporal CT modes, after Ref. 16: (a)
Interrupted time-lapse CT, (b) uninterrupted time-lapse CT, and (c) continuous streaming CT. In this paper, we implement protocols for both interrupted and
uninterrupted time-lapse CT and for continuous streaming on commercial machines. Each protocol is demonstrated with examples of granular segregation, the
germination of a mung bean, and mineral precipitation in a porous column, respectively.

required. These different temporal scan modes are illustrated in
Fig. 1.

Of course, the longer scan times associated with labo-
ratory CT are directly related to the lower flux typical of
laboratory tube x-ray sources, meaning that longer exposure
times are needed to accumulate sufficient photons on the detec-
tor for a high signal-to-noise ratio in the projection images.
Other technological limitations, such as detector efficiency and
performance of add-on-equipment, were recently reviewed by
Bultreys et al.19 Together, these limitations present a signifi-
cant barrier to using laboratory CT machines to study dynamic
processes since they place an upper limit on the rate of evo-
lution that can be examined. Even for relatively slow pro-
cesses where the acquisition rates of laboratory CT systems
are well tuned to the time scales of the processes being fol-
lowed, they are still under-utilised. Limited work has been
done, for example, in the areas of root growth20 and degrada-
tion of construction materials,21 but there is certainly untapped
potential.

One significant additional challenge faced by many lab-
oratory users arises from the proprietary software used to
control commercial machines. Each manufacturer provides
a user interface which includes utilities such as calibration

and beam warming, along with routines that guide the user
through configuring and starting their scan. While such pro-
prietary software has lowered the barriers to new applications
of static CT, it presents an obstacle for temporal studies. Start-
ing a new scan requires user intervention, which becomes
impractical when wanting to undertake a large number of
scans. Figure 2 summarises laboratory-based temporal stud-
ies identified by the authors to date according to the num-
ber of tomograms in a time-series, the temporal scanning
mode, and the machine type. The above impracticality of con-
ducting a large number of scans could explain why all but
8 of the 60+ time-lapse studies (both interrupted and unin-
terrupted) are limited to less than 10 tomograms in a time-
series with none acquiring more than 30. A number of groups
have developed custom CT machines in-house by assem-
bling individual x-ray sources, manipulators, and detectors.
These afford a greater degree of flexibility over commercial
machines22 and have allowed the implementation of continu-
ous streaming.23,24 However, as shown in Fig. 2, continuous
acquisition has not yet been implemented on a commercial
machine.

Usually for both time-lapse and continuous streaming,
the number of projections N for each scan is decided ex ante,

FIG. 2. A summary of previous laboratory-based tempo-
ral CT studies, categorised by the temporal CT scanning
modes explained in Fig. 1 (interrupted time-lapse, unin-
terrupted time-lapse, and continuous acquisition), and
the machine type (commercial or custom built). The
data for this plot are available in Supp. Table I in the
supplementary material.

ftp://ftp.aip.org/epaps/rev_sci_instrum/E-RSINAK-89-002809
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based on a priori knowledge of the best acquisition time for
an optimal signal to noise ratio. Projections are then acquired
in a sequential order as the sample is rotated through a full
circle with the angular increment given by dividing 360◦ by N.
However, with this method, any movement is captured pro-
gressively over successive projections giving rise to spiral
artefacts in the reconstructed tomogram.25 Furthermore, the
same acquisition time must be used throughout and cannot be
changed mid-process. One approach to overcome the motion
artefacts was to distribute the angles more evenly in time
using interlaced sampling.26 The projections of successive
rotations are offset from each other so that they do not over-
lap, from which subsets are reconstructed with a model-based
scheme using prior information. This allowed visualisation of
fine dendrites with high spatial and temporal resolution.27 An
alternative approach is a golden-ratio distribution of projec-
tion angles that was inspired by the way plants distribute their
leaves28 with the angular increment ∆φ equal to the golden
ratio times 360◦,

∆φ=

√
5 − 1
2

· 360◦ ≈ 222.5◦. (1)

This approach has the added benefit of allowing the num-
ber of projections for each reconstruction to be chosen
ex post facto. A number of studies have successfully imple-
mented golden-ratio sampling in simulations,29 in MRI,30

with neutron tomography,31,32 and at synchrotron x-ray facil-
ities,33 but although there is interest for applications on lab-
oratory CT machines, up to now it has not been technically
possible.34

In this paper, we present two protocols for advanced tem-
poral CT on commercial laboratory systems. The first protocol
in Sec. II considers the steps needed to enable automated
acquisition of time-lapse CT scans. Interrupted time-lapse is
demonstrated through two-way synchronisation with an in situ
shear cell, whilst the ease of acquiring a large number of unin-
terrupted scans is demonstrated by collecting 54 tomograms
of a slowly germinating mung bean35 over a 108 h period.
Although CT has very recently been used to study seed ger-
mination,36 this is the first high temporally resolved quantifi-
cation of the process. The second protocol enables continuous
streaming with golden-ratio angular sampling. This is the first
time golden-ratio sampling of a CT experiment has been used
in conjunction with an iterative reconstruction algorithm. The
method is applied to analyze mineral precipitation in porous
media in Sec. III, allowing a comparison between spatial and
temporal resolution of reconstructions with differing num-
bers of projections. Whilst the protocols may appear similar,
they both control the CT system in different ways. The auto-
mated time-lapse CT protocol automates the starting of many
scans using scan modes already provided on the machine; on
the other hand, the continuous golden-ratio acquisition pro-
tocol shows how new scan modes can be implemented for
temporal CT.

Both protocols were encoded into software extension
modules for evaluation on the Nikon High Flux Bay within
the Henry Moseley X-ray Imaging Facility (HMXIF), in the
Henry Royce Institute at The University of Manchester, UK.
The High Flux Bay is a 225 kV walk in room fitted with a

6-axis manipulator and a PerkinElmer 1611 flat panel detector
(a size of 4000 × 4000 pixels and a pixel pitch of 100 µm),
running Nikon’s proprietary Inspect-X version 5.1.4.3. The
software modules were created using the IPC interface37 to
Inspect-X, which allows the proprietary software to be con-
trolled programmatically. The extension modules run along-
side Inspect-X, and as the safety interlocks are managed
by the proprietary software, the safety of the CT system is
unaffected. It should be emphasised that no additional hard-
ware or software modifications were needed for the extension
modules to work. The software extension implementations,
along with datasets from this paper, can be downloaded from
Zenodo.38

II. AUTOMATIC TIME-LAPSE CT

There are many situations in which one would like to
acquire a series of CT images of objects as they evolve.
In the “interrupted” case [Fig. 1(a)], the evolution of the
microstructure would be induced by an external influence such
as tension,39 indentation,40 or electrical charging that can be
interrupted.41 On the other hand, in the “uninterrupted” case
[Fig. 1(b)], the sample evolves naturally due to the environ-
ment it is placed in, for example, the pupation of a chrysalis18

or the corrosion of a magnesium alloy.42 The protocol shown in
Fig. 3(a) for acquiring a series of time-lapse scans is similar for
both cases with a series of scans each separated by an evolution
period. Whilst each step in the protocol is fairly simple, the
major obstacle is controlling the x-ray system to perform these
tasks without user intervention. Each commercial machine has
scan modes that are tailored to the particular instrument, so the
first step in a time-lapse protocol is to use these pre-configured
modes to start a scan and wait for it to finish. For interrupted
time-lapse, it is then necessary to start the forcing mechanism

FIG. 3. Protocols for (a) automated time-lapse CT and (b) golden-ratio con-
tinuous streaming. Although the steps by themselves appear simple, the
challenge is in controlling the x-ray system to automatically perform these
operations without user intervention.
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FIG. 4. A shear cell specially developed for studying granular segregation
using CT.

and wait for the forcing to finish, with the challenge lying in
synchronising the forcing rig with the x-ray system. Although
uninterrupted time-lapse simply requires waiting for a timer
to elapse, to allow sufficient time for evolution to occur, there
are a number of other factors which must be considered. The
detector and source performance varies over time, leading to
differences of up to 1% in gray scale values in a series of scans
performed after several hours interval.43 This has a signifi-
cant impact when automatic global gray scale thresholding is
used as the sole method of segmenting time-series,15 and more
advanced segmentation techniques are required. Variability in
the source can also be mitigated by warming the x-ray beam

during the evolution period whilst waiting for the next scan.
Once the evolution period has finished, a subsequent scan must
be automatically started.

A. Interrupted time-lapse CT: A synchronised
shear cell

We highlight the potential for automated interrupted time-
lapse CT by studying granular segregation using a shear cell
specially adapted for CT. The shear cell shown in Fig. 4 is of
the same dimensions as used previously44 but with the motors
mounted vertically above the unit. This allows the entire cell
to rotate within the CT machine without the motors passing
through the x-ray beam. A USB (Universal Serial Bus) TTL
(transistor-transistor logic) serial cable (FTDI, Glasgow, UK)
was used to create two-way communication between the CT
acquisition computer and the shear cell. When the x-ray system
is ready for the forcing, it sends a TTL pulse to trigger the shear
cell, which sends a return pulse back to the acquisition com-
puter when it has finished. The shear cell was initially loaded
with a mixture of 6 mm borosilicate glass beads at the bot-
tom and smaller 3 mm beads on the top. The shearing motion
forces the mixture of beads to segregate with the smaller beads
percolating downwards and the larger beads being squeezed
upwards.45

The series of CT scans allows the three-dimensional
movement of the beads from each shearing motion to be
visualised. Figure 5 shows central vertical slices perpendic-
ular to the shearing from two experiments: (a) shows 4 scans
with 10 shear cycles between each scan, whilst (b) has 1
shear cycle between each scan. Although the progressive seg-
regation can be appreciated in the former experiment, the
large movement of the 6 mm particles between each image
means that it is difficult to track the positions of individ-
ual spheres from one scan to the next. The segregation is
more gradual in the latter experiment, but as the movements

FIG. 5. Segmented and colorised virtual central slices
perpendicular to the shearing from two interrupted time-
lapse experiments of a granular shear cell filled with 6 mm
(colorised green) and 3 mm (red) borosilicate glass beads.
(a) comprises of 4 scans with 10 shear cycles between
each scan, whilst (b) shows scans separated by 1 shear
cycle per scan. The small particles can be seen to percolate
downwards, whilst the large particles migrate upwards.
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between images are smaller, it is possible to track individual
particles.

These preliminary results highlight the importance of
evolutionary time scales for time-lapse experiments with the
mixing in (b) easily quantifiable. Although it may take hun-
dreds of shear cycles to reach full inversion with the large at
the top and small on the bottom,44 the automatic synchronisa-
tion means that it is now possible to have one scan for every
shear cycle and further work is currently under way to quantify
segregation using CT.

B. Uninterrupted time-lapse CT: Mung
bean germination

In order to demonstrate the value of an automated unin-
terrupted time-lapse approach for collecting many tomograms,
we have applied the method to study the germination36 of a
mung bean (vigna radiata). These green coloured beans are
a vital food crop in Southeast Asia and are often sprouted
before eating to improve their nutritional value.46 Sprouting is
the household name for the germination process, during which
the bean structure changes significantly as the outer skin (testa)
ruptures and the new root (radical) emerges.47 Although the
exact time is sensitive to the surrounding environmental con-
ditions, typically the entire germination process can take the
order of a few days, making it a suitable specimen sample for
evaluating our method.35

1. In vitro method

A sample holder for the bean was created by gluing a
piece of 13 mm diameter polyimide tubing to a standard sam-
ple mount, as shown in Fig. 6(a). Wet tissue was placed at
the bottom of the sample holder, followed by several layers
of dry tissue. The bean was placed at the top of the sam-
ple holder with small pieces of dry tissue placed around it
to secure its position within the tube. The tube was sealed
with a cling film to create a moist micro-climate to counter

the drying effect of the warm environment inside the x-ray
machine.

An initial dry scan was taken with a similar setup to that
described above, except without the wet tissue. The bean was
then allowed to imbibe for 3.5 h in ∼70◦ tap-water to initi-
ate the germination process before being carefully transferred
back to the sample holder setup for the in vitro scans. 54 CT
scans were completed during the germination phase at two-
hour intervals with the sample remaining inside the machine.
All scans comprised of 800 continuously acquired projections
with a 708 ms exposure time, 4× binning, 2× frame averaging,
a voltage of 65 kV, and a current of 100 µA. The reconstructed
voxel size was 18.3 µm3. Each scan took approximately 18 min
with the automatic reconstruction in the proprietary Nikon CT
Agent software taking an additional 4 min.

A gray scale slice from the final reconstructed volume of
the germination phase is shown in Fig. 6(b). The volumes were
processed using TCL scripting in Avizo 9. The raw recon-
structed data were first filtered using a 2D non-local means
filter. A mask was defined for the region containing tissue
paper, and an auto-intensity-thresholded gradient image was
subtracted from the entire auto-intensity-thresholded image
in this mask region to separate the tissue from the mung
bean. The volume of the segmented bean was calculated by
performing a label analysis. The poor intensity and textural
contrast between the different internal parts of the bean meant
that it was impossible to further segment the bean. However,
a single slice was manually segmented to highlight the main
parts of the bean and is shown in Fig. 6(c).

2. Results

Figure 7 shows 3D volume rendering and 2D slices from
different stages of the mung bean germination. Videos of the
entire process can be found in the supplementary material
(videos S1 and S2). Small tissue artefacts can be seen, but
the automated scripting was the most efficient method of seg-
menting 54 datasets. Qualitatively, it can be seen how the

FIG. 6. (a) A photograph of the in vitro setup for mung
bean germination; (b) a slice of the reconstructed volume
showing the gray scale levels; and (c) the same slice col-
orised using a manual single slice segmentation of the
different bean parts. The scale bar is the same size for (b)
and (c).

ftp://ftp.aip.org/epaps/rev_sci_instrum/E-RSINAK-89-002809
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FIG. 7. Stages of mung bean germination captured through micro-XCT with
3D virtual representation and 2D slices shown at different times. The entire
evolution can be appreciated in videos S1 and S2 of the supplementary
material.

surface of the bean becomes crinkled after imbibing in water
[Fig. 7(b)],48 before the surface smoothens as the bean expands
and swells [Fig. 7(c)]. Finally, the radical emerges [Fig. 7(d)]
and elongates [Fig. 7(e)]. Each of these phases can be seen
quantitatively in Fig. 8, which shows the evolution of the bean’s
volume over time. The growth rate is highest between (B)
and (C), which corresponds to the swelling of the cotyledons.
Between (C) and (D), the growth of the cotyledons slows, but
the radical emerges. The slower growth between (D) and (E)
is the elongation of the radical. The growth rate of the bean
within the system was observed to be qualitatively similar to
a control sample subject to the same water and temperature
conditions but left outside of the CT system.

The novel use of CT to quantify the germination process
also opens doors for using the technique to compare the devel-
opment of other seeds, for example, the germination of seeds
that are genetically modified for harsh climates49 or the natural
adaptation of seeds to unfavorable conditions.50

FIG. 8. The 3D volume of the mung bean over time. There are several distinct
regimes with labels A-E representing the times shown in Fig. 7.

III. CONTINUOUS GOLDEN-RATIO ACQUISITION:
PRECIPITATION OF BARITE

In many practical cases, one is not sure of the optimal
scan time in terms of frame rate vs signal-to-noise ratio. In
these cases, continuous acquisition with golden-ratio angular
sampling provides the flexibility to acquire the data and then
decide on the optimal frame rate ex post facto.

Here we demonstrate the protocol for continuous golden-
ratio acquisition and evaluate its utility as applied to imaging
mineral precipitation in porous media. Mineral precipitation
is a dynamic process where there is a strong feedback between
the reaction kinetics and the reaction products with the varying
evolution rates, making it a suitable application for continuous
golden-ratio acquisition. The growing crystals progressively
clog the pore structure, which reduces ion transport and can
limit the precipitation rates.51 Understanding the evolution of
the 3D structure over time is crucial to be able to control
and predict the process in nature. This is important to the
oil, gas, and hydrothermal energy-recovery industries since
fluid circulation through porous rocks can induce precipita-
tion. This in turn causes formation damage, which undermines
the efficiency of energy extraction. Additionally, if controlled,
precipitation in the subsurface could have important environ-
mental applications, e.g., CO2 sequestration and to remove
radionuclides from contaminated fluids. Barite is an impor-
tant mineral since it can form during oil extraction due to
the mixing of formation waters rich in barium and injected
fluids rich in sulphate. It has also been proposed as a bar-
rier for radionuclides in spent nuclear fuel repositories and to
remove radionuclides from contaminated flow back water by
co-precipitation with barite.

A. Protocol

It was chosen to use golden-ratio sampling28 of projection
angles with the angular increment ∆φ given by Eq. (1). If the
first projection is at 0◦, then the ith projection angle φi can be
calculated as

φi = i · ∆φ mod 360, (2)

Compared with the alternative approach of continually mak-
ing full rotations of 360◦ with a fractional angular increment
(see Fig. 9), this golden-ratio strategy has a much larger angular

ftp://ftp.aip.org/epaps/rev_sci_instrum/E-RSINAK-89-002809
ftp://ftp.aip.org/epaps/rev_sci_instrum/E-RSINAK-89-002809
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FIG. 9. Schematic showing a comparison between: (a) 100 golden-ratio sam-
pled angular projections given by Eq. (2) and (b) a scan of 100 equi-angular
projections. The first 20 projections are labeled and shown in black with the
remaining projections shown in gray.

increment and hence a longer time to move between projec-
tions. However, there are a number of advantages. Golden-ratio
sampling succeeds in temporally distributing projections more
equally across a full circle. As an example, Fig. 9 compares
the first 100 golden-ratio sampled projections with a scan of
100 equi-angular projections (spaced by an angular increment
of 3.6◦). The first 20 golden-ratio projections have already
completed 7 full rotations, whilst 20 equi-angular projections
have only covered 72◦. As golden-ratio sampling continu-
ously covers a circle every 3 projections, the acquisition can
be stopped at any point and a reasonable reconstruction may
still be achieved with a quality that depends solely on the total
number of projections used to reconstruct. In a certain sense,
golden-ratio angular sampling is optimal52 with each projec-
tion containing information about the object as independent
from previous projections as possible. It is also noteworthy that
as the golden ratio is irrational, each projection angle is unique
and never re-sampled even if tens of thousands of projections
are acquired.

The basic protocol for golden-ratio continuous sampling
is shown in Fig. 3(b). Given the longer time to move the manip-
ulator, the image save can be moved to occur in parallel with
the manipulator rotation. Whilst the protocol appears to be a
trivial set of operations, the greatest challenge for commercial
machines is gaining access to the x-ray source, manipulator,
and imaging sub-systems to implement each step. An exten-
sion module was successfully coded for Nikon machines that
is available for download.38

B. Experimental acquisition

A column of sintered glass beads approximately 10 mm
long and 6 mm in diameter was vertically constricted by heat
shrink tube and connected to a flow rig developed at HMXIF.
Solutions of barium chloride (1 mmol BaCl2) and sodium sul-
phate (1 mmol Na2SO4) were delivered at a constant flow rate
of 0.34 ml min−1 using high pressure ISCO syringe pumps.
The fluids have a mixing time of approximately 1.8 min before
entering the sample, which is expected to be sufficient to induce
significant crystal nucleation.53

An initial dry scan was performed using the proprietary
Inspect-X circular scan mode with 3141 projections acquired
at a voltage of 120 kV, a current of 67 µA, 2× binning, 4× frame

FIG. 10. Schematic showing how different time-series were constructed from
subsets of the same continuously acquired projections. The black circles indi-
cate which projection the reconstruction is centered about. See Table I for a
summary of the different series.

averaging, and an exposure time of 1.4 s. After completion of
the dry scan, the flow was started and the software extension
was used to continuously acquire 4400 projections over 11 h
with the same imaging conditions as the dry scan, except 1×
frame averaging. Each projection took an average of 8.9 s to
acquire, with ∼3.5 s to clear the detector buffer and capture
the new image and ∼5.4 s to move the manipulator. In other
words, 60% of the time for each projection was needed to move
the manipulator, whilst 40% was needed for acquiring the
image. The final projections were 2000 × 2000 pixels in size.
The source-to-center and source-to-detector distances were
30.2 mm and 1404.0 mm, respectively, giving a final recon-
structed voxel size of 4.3 µm3.

To investigate the spatial-temporal resolution trade-off,
three time series of reconstructions P100, P600, and P2000 were
computed using 100, 600, and 2000 projection subsets, respec-
tively, as shown in Fig. 10. The individual reconstructions
in each time series are centered about a projection index i,
indicated by a superscript, and spaced apart by 100 projec-
tions. For example, the first reconstruction in the P100 series is
P(100)

100 , which is centered about projection 100 and uses projec-
tions 51-150 for the reconstruction, whilst the second member
of the series is P(200)

100 . The series are summarised in Table I.
The projections used in one P100 reconstruction do not over-
lap with those used in the previous or next reconstruction.
However, the P600 series implies an overlap of 500 projections
used between consecutive reconstructions. For instance, P(300)

600

uses projections 1-600 and P(400)
600 uses projections 101-700

with projections 101-600 common to both. As a comparison,
a subset of P600 known as P∗600 with reconstructions using

TABLE I. A summary of the different reconstruction time-series.

Series Interval Min index Max index Reconstructions in series

P100 100 100 4200 P(100)
100 , P(200)

100 , . . . , P(4200)
100

P600 100 300 4000 P(300)
600 , P(400)

600 , . . . , P(4000)
600

P∗600 600 400 4000 P(400)
600 , P(1000)

600 , . . . , P(4000)
600

P2000 100 1000 3300 P(1000)
2000 , P(1100)

1000 , . . . , P(3300)
2000
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non-overlapping projections (i.e., an interval of 600) was also
used for quantitative analysis in Fig. 14. The golden-ratio
angular sampling scheme allows this way of increasing the
temporal resolution from a single time lapse dataset; how-
ever, care must be taken to interpret the results as projec-
tions are reused for different reconstructions. In practice, this
means that any difference between consecutive reconstructions
is due to changes in the sample within the non-overlapping
100 projections.

The native Nikon CT Pro reconstruction software uses
an equi-angular FDK (Feldkamp, Davis, and Kress54) imple-
mentation and performs many operations such as alignment
automatically. Although the golden-ratio subsets are not equi-
angular, after reordering subsets of projections in ascending
angular order and manually applying shading corrections, the
CT Pro software can be used to obtain approximate recon-
structions. An in-house reconstruction scheme was also con-
structed using a MATLAB implementation55 of the iterative
Conjugate Gradient Least Squares (CGLS) algorithm.56 The
ASTRA Tomography Toolbox57,58 was used to employ GPU-
acceleration of the computationally most expensive steps of
forward- and back-projection. 50 iterations of the CGLS algo-
rithm were empirically found to provide the optimal trade-off
between resolution and noise and were used in all cases. Prior
to reconstruction, the individual projection images were sub-
jected to global horizontal centering and rotation-stage tilt
corrections with the parameters determined from the recon-
struction of the static dry scan using the proprietary Nikon
CT Pro software. An additional individual horizontal align-
ment of projections using the sharp edge of the flow cell was
found to improve reconstruction quality. The need for this
correction is believed to originate from the slight sample move-
ment due to the fast rotation of the rigid tubing connected to
the flow cell.

C. Results

Single reconstructions P(1000)
100 , P(1000)

600 , and P(1000)
2000 were

performed using both the proprietary FDK and the iterative
CGLS methods with Fig. 11 showing 2.15 mm × 2.15 mm
regions of interest (ROI). With as few as 100 projections,
the FDK reconstruction produces a significant amount of
speckled noise that is difficult to distinguish from the crys-
tals and certainly could not be accurately segmented. The
CGLS reconstruction for P(1000)

100 is markedly clearer with the
crystals identifiable from beads and pore spaces. FDK perfor-
mance improves with more projections; however, upon close
examination, the iterative reconstructions still produce sharper
crystal boundaries. With significantly better performance for
P100, the iterative CGLS scheme was chosen to reconstruct the
entire time-series and perform analyses in the remainder of
this paper.

Comparing the P100, P600, and P2000 series, it can be seen
that a larger number of projections give sharper boundaries
between the individual crystals. Distinguishing the interfaces
is important for an accurate quantification of the volume and
surface area of crystals. For example, the noise and low spa-
tial resolution for P(1000)

100 blurs the space between crystals,
making them undistinguishable (also see video S3 of the

FIG. 11. Comparisons of reconstructions using FDK performed using
Nikon’s proprietary CTPro and a custom reconstruction implementing the
iterative CGLS algorithm. Gray scale regions of interest of size 2.15 mm
× 2.15 mm from the same horizontal slice are shown for reconstructions
P(1000)

100 , P(1000)
600 , and P(1000)

2000 . Barite is white, glass beads are light gray, and
fluid (pores) is dark gray.

supplementary material). As the barite has a highly contrasting
gray scale level, the blurring would likely lead to an overes-
timation of the total volume and possibly an underestimation
of the surface area. We also note that crystal boundaries are
sharper for P(1000)

2000 than for P(1000)
600 . Although this is expected for

a static scan, it is seemingly counter-intuitive for a temporally
evolving sample since the movement and growth of crystals
over the 4.9 h needed to acquire 2000 projections would be
expected to blur the crystal boundaries. This blurring would
also be expected to be most significant for P(1000)

2000 since it cor-
responds to the first 4.9 h of the experiment when the crystal
growth rate is highest. However, Fig. 11 shows surprisingly
sharp interfaces of glass beads and crystals, which is possi-
bly due to slowing reaction rates over time with most crystals
nucleating within the earliest 1000 projections. A second inter-
esting observation is that the number of crystals in P(1000)

100 is

lower than for P(1000)
600 and P(1000)

2000 . The higher number of crys-
tals present for larger numbers of projections is a consequence
of low temporal resolution. That is, the projections used in P600

cover longer periods of time during which more crystals have
nucleated in the pore structure than in P100. In the same man-
ner, P2000 shows even more crystals than P600. Consequently,
during the initial growth period when the number of crystals
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FIG. 12. Doubling of crystals can be found for higher
numbers of projections in the reconstruction due to poor
temporal resolution. The seemingly two crystals A and B
seen in the 3D visualisation of P(3000)

600 (a) are in fact one
single crystal in the P100 series with the crystal in position
A1 for P(2900)

100 (b) but in position A2 in P(3000)
100 (c).

invading the pore structure is larger, the poor temporal reso-
lution of P600 and P2000 would result in the over-estimation of
the total volume of crystals.

Although the crystal boundaries for P600 and P2000 appear
to show increasing clarity, the movement and growth of crys-
tals over the 1.5 and 4.9 h necessary to acquire 600 and 2000
projections can lead to artefacts. Figure 12(a) seemingly shows
two crystals A and B for P(3000)

600 ; however, by comparing with
the same spatial position in P100 at consecutive time steps
[Figs. 12(b) and 12(c)], we can see that it is in fact one crystal
that has suddenly moved from position A1 to A2. Although the
crystal is in different positions for the P(2900)

100 and P(3000)
100 recon-

structions, projections containing the crystal in both spatial
positions are used for P(3000)

600 and P(3000)
2000 , causing the doubling

artefact. If instead of a sudden change of position the crystal
continuously moved between positions A1 and A2, the effect
would be the formation of a header and tail that makes the crys-
tal artificially elongated in the moving direction. Both cases
lead to an overestimation of the crystal volume and also the
surface area. In our experiment, most crystals settle over time
as the pore structure clogs; thus, the overestimation of crystals

is only temporary (videos S4, S6, and S8) and is expected to
be progressively less important over time.

Figure 13 shows the precipitation of barite (white crys-
tals) over time for P600. Similar time-series for P100 and P2000

can be found in the supplementary material. In general, the
number of crystals is higher closer to the inlet (bottom of the
picture) and decreases further upwards in the column. This
is expected due to the high saturation index used here that
has been shown to cause nucleation in the fluid.53 These crys-
tals can be transported in the flow stream and eventually be
deposited on the glass surfaces. The deposition of crystals
seems to take place where faster flow is expected: First, at
the center of the column, and then once the main flow paths
at the center are clogged, accumulation is seen closer to the
inlet and spread throughout the diameter of the column. Crys-
tals are expected to get trapped by a filtration mechanism as
they grow and are transported through the permeable flow
paths.

From video S5 (see the online supplementary material),
barite crystals can be observed in the pores in the first recon-
struction, P(300)

600 reconstruction. In the P100 series (video S3),

FIG. 13. (a) Gray scale slices parallel to the flow direction (of size 4.3 mm × 4.8 mm) and (b) 3D visualisations (of sub-volumes 2.15 mm × 1.72 mm
× 1.72 mm at the center bottom of the sample) from the P600 series. In (a), the white corresponds to barite, the light gray corresponds to glass, and dark gray
corresponds to fluid (pores). In (b), the pores and glass are set to transparent and only the crystals are rendered. The colour scheme relates to the absorption of
crystals where hotter (more red) colours correspond to denser voxels, and more blue colours correspond to less dense voxels. Videos showing the full temporal
evolution can be found in the online supplementary material, along with corresponding videos for P100 and P2000.
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crystals can be visually identified first in P(300)
100 . Nevertheless,

it was not possible to quantify the volume of crystals before
P(400)

100 since in P(300)
100 , crystals could not be distinguished from

noise by thresholding the pixel intensity. This allows for an
interesting analysis of the method’s efficiency to capture the
early stages of growth.

When the size of crystals are below what can be resolved
before projections 300-400, it is expected that the first recon-
struction P(300)

600 would show only very faint crystals (as they
appear only on the second half of the projection set). Contrarily
for P100, crystals are present, for example, between projections
451 and 550. Therefore, it is expected that the higher temporal
resolution of P100 would yield a more resolved reconstructed
dataset for more accurate quantification at least up to projec-
tion 700. This is when P600 can be used without the overlap of
projections that we know do not contain spatially resolvable
crystals.

Bearing in mind the spatial and temporal artefacts dis-
cussed above, it is clear that the number of projections can have
an important impact on the quantification of crystal growth
over time. Figure 14(a) shows that the volume of crystals
measured from a different number of projections can differ
up to a factor of 3. During the initial 1000 projections, the
volume is smaller when fewer projections are used in the
reconstruction. Although it was predicted from the observa-
tions that P600 and P2000 would overestimate the volume of
crystals at early time due to low temporal resolution, this is
only true for P2000 with P100 and P600 showing similar val-
ues. After 1000 projections, the volume from P100 increases
at a faster rate than P600 and P2000. This is possible evidence
of the volume overestimation, arising from the space between
neighbour crystals appearing as crystal due to the poor spatial
resolution.

FIG. 14. Quantification of (a) the total volume of crystals and (b) the overall
crystal growth rate calculated from Eq. (3) for each of the reconstruction modes
shown in Fig. 10 and Table I. The inset in (a) highlights the volume variation
over the initial 1100 projections. Note that the x-scale for both graphs is the
same with the projection index labeled in (a) and the time since the start of
the experiment in (b).

The growth rate at the i + 1th projection was calculated
as53

Ri+1 =
∆V

Vm∆t
2

Ai + Ai+1
, (3)

with ∆V being the change in crystal volume, ∆t being the
change in time, Vm being the ratio of the molecular weight
(233.4 g mol−1) to the density (4.48 g cm−3), and the second
fraction representing the average total surface area of crystals
over the time period. Interestingly, the growth rate shown in
Fig. 14(b) does not follow the same trends observed for the vol-
ume in Fig. 14(a), implying that the spatial-temporal artefacts
discussed above have different effects on the volume and sur-
face area over time and should be further investigated beyond
this paper. The rates calculated from P2000 and P∗600 are similar
and do not allow to draw any information from the beginning
of the experiment. P100 and P600 show an accentuated decrease
in the growth rate during the first 3 h of the experiment, which
is a consequence of reduced fluid mobility through some flow
paths.5,59 We note that the rates calculated from P100 are faster
than from P600, but that there is a higher variability of the rate
trend corresponding to P100. However, these faster rates for
P100 compared to P600 are difficult to explain based on the
divergent increase in the crystal volume shown in Fig. 14(a).
This behavior could be related from the dense barite crystal
observed for P100. These artefacts lead to an over-estimation
of the volume and have unpredictable effects on the surface
area. Since the amount and type of each artefact vary with
time, and since their effects on volume are not proportional to
their effects on the surface area, the differences in growth rate
for the different reconstruction methods are attributed to the
artefacts inherent to temporal CT.

D. Conclusion

In conclusion, by using continuous golden-ratio acquisi-
tion coupled with an iterative reconstruction scheme to visu-
alise mineral precipitation, we have been able to analyze spatial
and temporal effects using 100, 600, and 2000 projections in
the reconstruction. We identify two main sources of error: (1)
blurring of crystals for P100 due to lower spatial resolution
and (2) doubling of crystals for P600 and P2000 due to lower
temporal resolution. In an ideal situation, it would be prefer-
able to use 600 or more projections but with a higher temporal
resolution. Currently the time taken to move the manipula-
tor through ∆φ (1) is 5.4 s, which is 60% of the total time
for each projection. By contrast, the same CT machine with
the same exposure time takes 1.9 s to move through 3.6◦ (for
an equi-angular scan with 100 projections), which is 35% of
the total projection time. Hence, one method for reducing the
movement time, and hence increasing the temporal frequency,
would be to decrease the magnitude of ∆φ. Smaller irrational
angular increments such as ∆φ/7 or ∆φ/11 could be tested for
improved performance.

One clear advantage of the golden-ratio scheme was that
reconstructions can be performed from the same dataset with
any number of projections. With traditional circular scanning,
this optimization would require multiple experiments with
varying temporal and spatial resolution. With growth rates
changing during an experiment, golden-ratio scanning also
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allows different numbers of projections to be used at different
points in the experiment. Thus the present work can be seen
as a step toward “smart” reconstruction methods that adapt to
features found in the sample.

We emphasise that CGLS was used in the present work
as a simple example of an iterative reconstruction method
providing advantages over FDK. In recent years, a substan-
tial amount of work has been devoted to developing new
reconstruction algorithms to compensate for incomplete data
such as few projections or a limited angular range. Notably,
sparsity60–62 and spatio-temporal63,64 regularisation methods
have been employed with great success to improve recon-
struction quality in case of few projections. More work is
needed to advance such methods for routine use, including
addressing questions of how few projections suffice65,66 to
provide accurate reconstructions for different types of sam-
ples. This, however, is much beyond the scope of the present
work for which the focus was to demonstrate the capa-
bility for enabling temporal CT on existing laboratory CT
instruments.

The continuous golden-ratio acquisition extension would
be useful not only to scan other laboratory setups involving
flow cells19 but also to study other chemical processes where
the kinetics change during the course of a reaction.

IV. DISCUSSION AND FURTHER SCOPE

In this paper, we have advanced the automated temporal
CT capabilities of laboratory CT machines by implementing
generic protocols for: (1) Automated time-lapse CT and (2)
a continuous golden-ratio acquisition. These protocols over-
come the restrictions placed on laboratory machines by pro-
prietary manufacturers’ software, and three real applications
were presented.

The generic protocol for time-lapse CT was presented in
Sec. II with implementations of both the interrupted and unin-
terrupted cases. The ability to automatically synchronise a
commercial system with an in situ rig was highlighted with
a shear cell used to study granular segregation. Automatic
synchronisation of in situ rigs would be an invaluable devel-
opment for other laboratory time-lapse studies such as the
compression of foams and other materials67,68 or the charging
of batteries69 and would also be particularly advantageous
for laboratory Digital Volume Correlation (DVC) studies.70

The capability of automated uninterrupted time-lapse with
large numbers of tomograms was demonstrated through the
first use of CT to examine the uninterrupted germination
of a mung bean with 54 scans performed over a 108 h
period. This certainly opens up the possibility of acquiring
many datasets of evolving processes in the labs and could
be used to build uninterrupted temporal pictures of salt evap-
oration, fungal decay, the drying of plaster, or even battery
degradation.

In Sec. III, we present the first laboratory application
of continuous projection acquisition with golden-ratio angu-
lar sampling. An initial comparison showed how an iterative
reconstruction scheme gave significant improvements in image
quality over the standard FDK algorithm usually used in com-
mercial software, with more resolved boundaries especially

for lower numbers of projections. Using the iterative scheme,
we created different time series using subsets of 100, 600,
and 2000 projections in each reconstruction; in doing so, we
were able to examine the spatial and temporal effects of differ-
ent numbers of projections in a reconstruction. Although the
crystals were constantly changing, the reconstructions with
2000 projections were surprisingly sharp as a result of the
golden-ratio scheme giving an equal temporal distribution of
projections around a circle.25 However, whilst higher num-
bers of projections gave spatially sharper images, they caused
doubling of crystals that moved during the time required
to acquire those projections. Lower numbers of projections
have reduced spatial resolution that blurs crystal boundaries
although the temporal resolution is higher. Further work must
be done to quantify these spatial and temporal artefacts, whilst
the sampling method should also be optimised to increase
the temporal acquisition rate. A wider availability of iterative
reconstruction schemes on commercial machines would also
aid their usefulness for time-based studies with high temporal
resolution.

Clearly, these protocols by themselves unlock the tem-
poral capabilities of commercially available laboratory CT
machines. Whilst the particular software modules have been
implemented on CT systems running Nikon’s Inspect-X, the
general protocols could be ported to other commercially avail-
able machines, provided that software libraries are supplied
for programmatic control of the systems. Similar approaches
may also be possible for other laboratory-based tomography
systems, for example, gamma-tomography.71 Moreover, from
a wider perspective, this paper serves to highlight the wide
flexibility of laboratory machines when they can be custom
controlled. It opens up the possibility of using laboratory
machines to generate customised datasets for new reconstruc-
tion algorithms. As a first example, the golden-ratio dataset
from this paper could be used to test algorithms for both local
and global temporal smoothing.72 Other temporal schemes
that give higher spatial resolution than golden angle sampling
such as “Time-interlaced model-based iterative reconstruc-
tion” (TIMBIR)26 can also now be adapted for laboratory
machines. Acquisition could also be performed from non-
custom geometries such as a tilted rotate-axis of the manipula-
tor, opening the potential of standard CT machines to perform
laminography.73

SUPPLEMENTARY MATERIAL

Please see the online supplementary material for the
following videos associated with this paper:

S1. 3D visualisation of mung bean (vigna radiata)
germination;

S2. 2D slice through a germinating mung bean (vigna
radiata);

S3. 2D gray scale slice of barite precipitation in porous
media using P100;

S4. 3D visualisation of barite precipitation in porous media
using P100;

S5. 2D gray scale slice of barite precipitation in porous
media using P600;
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S6. 3D visualisation of barite precipitation in porous media
using P600;

S7. 2D gray scale slice of barite precipitation in porous
media using P2000;

S8. 3D visualisation of barite precipitation in porous media
using P2000.

In addition, the data for reproducing Fig. 2 are also provided
in supplementary material Table I.
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49D. López-Arredondo, S. I. González-Morales, E. Bello-Bello, G. Alejo-
Jacuinde, and L. Herrera, F1000Research 4, 651 (2015).

50I. Baxter, J. N. Brazelton, D. Yu, Y. S. Huang, B. Lahner, E. Yakubova,
Y. Li, J. Bergelson, J. O. Borevitz, M. Nordborg, O. Vitek, and D. E. Salt,
PLoS Genet. 6, e1001193 (2010).

51J. R. A. Godinho, K. Chellappah, I. Collins, P. Ng, M. Smith, and P. J.
Withers, “Time-lapse imaging of particle invasion and deposition in porous
media using in situ X-ray radiography,” J. Pet. Sci. Eng. (unpublished).

52I. G. Kazantsev, S. Matej, and R. M. Lewitt, in Proceedings of the Work-
shop on Discrete Tomography and its Applications [Electron. Notes Discrete
Math. 20, 205 (2005)].

53J. R. A. Godinho and A. G. Stack, Cryst. Growth Des. 15, 2064 (2015).

ftp://ftp.aip.org/epaps/rev_sci_instrum/E-RSINAK-89-002809
https://doi.org/10.1179/174328008x277803
https://doi.org/10.1016/j.tifs.2015.10.016
https://doi.org/10.1016/j.tifs.2015.10.016
https://doi.org/10.1016/j.micron.2011.10.002
https://doi.org/10.1016/j.earscirev.2013.04.003
https://doi.org/10.1016/j.gca.2017.10.024
https://doi.org/10.1016/j.csndt.2016.05.007
https://doi.org/10.1016/j.csndt.2015.09.001
https://doi.org/10.1016/j.csndt.2015.09.001
https://doi.org/10.1177/0309324714527588
https://doi.org/10.1038/nmat3497
https://doi.org/10.1002/adem.201600550
https://doi.org/10.1021/es505738d
https://doi.org/10.1007/s10704-016-0077-y
https://doi.org/10.1007/s10704-016-0077-y
https://doi.org/10.1088/0957-0233/26/5/055401
https://doi.org/10.1179/1743280413y.0000000023
https://doi.org/10.1016/j.compscitech.2017.10.023
https://doi.org/10.1007/s11340-010-9333-7
https://doi.org/10.1098/rsif.2013.0304
https://doi.org/10.1016/j.advwatres.2015.05.012
https://doi.org/10.1007/s11104-015-2425-5
https://doi.org/10.1127/ejm/2015/0027-2433
https://doi.org/10.1016/j.nimb.2013.10.051
https://doi.org/10.1364/ao.50.003685
https://doi.org/10.1088/1748-0221/12/02/c02010
https://doi.org/10.1117/1.3660298
https://doi.org/10.1109/tci.2015.2431913
https://doi.org/10.1109/tci.2015.2431913
https://doi.org/10.1038/srep11824
https://doi.org/10.1016/j.phpro.2017.06.040
https://doi.org/10.1109/tmi.2006.885337
https://doi.org/10.1109/tmi.2006.885337
https://doi.org/10.1016/j.nima.2011.03.023
https://doi.org/10.1016/j.nima.2011.03.023
https://doi.org/10.5194/se-7-1281-2016
https://doi.org/10.1117/12.681202
https://doi.org/10.1016/j.cemconres.2015.12.011
https://doi.org/10.1088/2057-1976/aa7c3f
https://doi.org/10.3927/59340663
https://doi.org/10.5281/zenodo.1204088
https://doi.org/10.1111/str.12053
https://doi.org/10.1111/str.12101
https://doi.org/10.1002/aenm.201300506
https://doi.org/10.1002/aenm.201300506
https://doi.org/10.3927/68112631
https://doi.org/10.1103/physrevlett.114.238001
https://doi.org/10.1017/jfm.2016.170
https://doi.org/10.1023/b:qual.0000040339.48521.75
https://doi.org/10.1093/aob/mcl145
https://doi.org/10.12688/f1000research.6538.1
https://doi.org/10.1371/journal.pgen.1001193
https://doi.org/10.1016/j.endm.2005.05.064
https://doi.org/10.1016/j.endm.2005.05.064
https://doi.org/10.1021/cg501507p


093702-13 Gajjar et al. Rev. Sci. Instrum. 89, 093702 (2018)

54L. A. Feldkamp, L. C. Davis, and J. W. Kress, J. Opt. Soc. Am. A 1, 612
(1984).

55P. C. Hansen, Numer. Algorithms 46, 189 (2007).
56M. R. Hestenes and E. Stiefel, J. Res. Natl. Bur. Stand. 49, 409 (1952).
57W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals,

K. J. Batenburg, and J. Sijbers, Ultramicroscopy 157, 35 (2015).
58W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt,

A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, Opt.
Express 24, 25129 (2016).

59J. R. A. Godinho, K. M. Gerke, A. G. Stack, and P. D. Lee, Sci. Rep. 6,
33086 (2016).

60E. Y. Sidky and X. Pan, Phys. Med. Biol. 53, 4777 (2008).
61T. L. Jensen, J. H. Jørgensen, P. C. Hansen, and S. H. Jensen, BIT Numer.

Math. 52, 329 (2012).
62M. Abir, F. Islam, D. Wachs, and H.-K. Lee, J. Radioanal. Nucl. Chem. 307,

1967 (2016).
63D. Kazantsev, W. M. Thompson, W. R. B. Lionheart, G. V. Eyndhoven,

A. P. Kaestner, K. J. Dobson, P. J. Withers, and P. D. Lee, Inverse Probl.
Imaging 9, 447 (2015).

64D. Kazantsev, G. Van Eyndhoven, W. R. B. Lionheart, P. J. Withers,
K. J. Dobson, S. A. McDonald, R. Atwood, and P. D. Lee, Philos. Trans. R.
Soc., A 373, 20140389 (2015).

65J. S. Jørgensen and E. Y. Sidky, Philos. Trans. R. Soc., A 373, 20140387
(2015).

66J. S. Jørgensen, S. B. Coban, W. R. B. Lionheart, S. A. McDonald, and
P. J. Withers, Meas. Sci. Technol. 28, 124005 (2017).

67S. A. McDonald, P. M. Mummery, G. Johnson, and P. J. Withers, J. Microsc.
223, 150 (2006).

68E. Bele, A. Goel, E. G. Pickering, G. Borstnar, O. L. Katsamenis, F.
Pierron, K. Danas, and V. S. Deshpande, J. Mech. Phys. Solids 102, 80
(2017).

69O. O. Taiwo, D. P. Finegan, J. M. Paz-Garcia, D. S. Eastwood, A. J. Bodey,
C. Rau, S. A. Hall, D. J. L. Brett, P. D. Lee, and P. R. Shearing, Phys. Chem.
Chem. Phys. 19, 22111 (2017).

70C. Jailin, A. Buljac, A. Bouterf, M. Poncelet, F. Hild, and S. Roux, Meas.
Sci. Technol. 29, 024003 (2018).

71U. Hampel, A. Bieberle, D. Hoppe, J. Kronenberg, E. Schleicher, T. Sühnel,
F. Zimmermann, and C. Zippe, Rev. Sci. Instrum. 78, 103704 (2007).

72L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrie, Phys. Med.
Biol. 57, 1517 (2012).

73S. L. Fisher, D. Holmes, J. S. Jørgensen, P. Gajjar, J. Behnsen, W. R. B.
Lionheart, and P. J. Withers, “Laminography in the lab: Imaging planar
objects using a conventional x-ray CT instrument,” Meas. Sci. Technol.
(submitted).

https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1007/s11075-007-9136-9
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1016/j.ultramic.2015.05.002
https://doi.org/10.1364/oe.24.025129
https://doi.org/10.1364/oe.24.025129
https://doi.org/10.1038/srep33086
https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1007/s10543-011-0359-8
https://doi.org/10.1007/s10543-011-0359-8
https://doi.org/10.1007/s10967-015-4542-2
https://doi.org/10.3934/ipi.2015.9.447
https://doi.org/10.3934/ipi.2015.9.447
https://doi.org/10.1098/rsta.2014.0389
https://doi.org/10.1098/rsta.2014.0389
https://doi.org/10.1098/rsta.2014.0387
https://doi.org/10.1088/1361-6501/aa8c29
https://doi.org/10.1111/j.1365-2818.2006.01607.x
https://doi.org/10.1016/j.jmps.2017.01.002
https://doi.org/10.1039/c7cp02872e
https://doi.org/10.1039/c7cp02872e
https://doi.org/10.1088/1361-6501/aa9818
https://doi.org/10.1088/1361-6501/aa9818
https://doi.org/10.1063/1.2795648
https://doi.org/10.1088/0031-9155/57/6/1517
https://doi.org/10.1088/0031-9155/57/6/1517

