Chapter 7. The WKB method. See eg Simmonds & Man Ch VI.

In this chapter we focus on eigenvalue problems for 2nd order ODEs, specifically

\[\frac{d^2y}{dx^2} + \lambda^2 r(x) y = 0 \quad y(0) = y(1) = 0 \] \[\text{[1]} \]

(note y as fn of x rather than x as fn of t as comes from stationary waves.)

7.1 Motivation

Stationary waves eg a string satisfy the wave equation

\[T \frac{d^2y}{dx^2} = \rho(x) \frac{1}{u^2} \frac{d^2y}{dt^2} \quad T = \text{tension} \]
\[\rho = \text{density of string}. \]
\[y(0, t) = y(1, t) = 0 \]
\[\text{Pinned at both ends} \]

Standing wave solutions have form \(y(x, t) = y(x) \cos\omega t \)

Reducing wave equation to

\[\frac{d^2y}{dx^2} + \frac{\rho(x)}{T} \omega^2 y = 0 \]

which is of the form \(\text{[1]} \).

7.1.1 Density constant \(\rho(x) = 1 \)

\[\frac{d^2y}{dx^2} + \left(\frac{\omega^2}{c^2} \right) y = 0 \quad c^2 = \frac{\rho}{T} \]

Solve \(y(x) = A \cos \lambda x + B \sin \lambda x \) \quad \(\lambda^2 = \frac{\omega^2}{c^2} \).

\(y(0) = 0 \Rightarrow A = 0 \quad y(1) = 0 \Rightarrow B \sin \lambda = 0 \)
\[\Rightarrow \lambda = n\pi \quad n = \pm 1, \pm 2, \ldots \]

So solve have form \(y = B \sin(n\pi x) \)

but \#0 solns only exist for \(n \in \mathbb{N} \), ie special or "eigen" values.

In general we only get closed form solutions for very simple \(r(x) \).

Note: It is using the "boundary conditions" on \(y(0) \) and \(y(1) \) rather than \(y(0), y'(0) \) that means solutions do not exist for all \(n \).

And like eigenvectors, "eigenvectors" can be multiplied by any constant \(B \).
7.2 The WKB Approximation

WKB stands for Wentzel, Kramers, Brillouin, maybe Jefferys' name should be added along with a few others but name has stuck.

If \(w \) (or \(\lambda \)) is very large then the zeros of the solutions are close together. We are planning on doing an asymptotic expansion for large \(\lambda \).

If \(r \) was constant in (17) we would have solutions

\[
y(x) = A e^{\pm i\pi x R}
\]

We therefore try \(y(x, A) = e^{\lambda g(x, A)} \)

Substitute in (17) gives

\[
\lambda^{-1} g'' + g'^2 + r = 0
\]

(1st order eqn in \(h = g' \)).

\[
\lambda^{-1} h' + h^2 + r = 0
\]

We then seek a regular expansion of the form

\[
h(x) = h_0(x) + \frac{1}{\lambda} h_1(x) + \frac{1}{\lambda^2} h_2(x) + O(\frac{1}{\lambda^3})
\]

(\(\frac{1}{\lambda} \) is like \(e \)).

Following this back to the original problem this is looking for a solution of the form

\[
y = \exp \left(\lambda g_0(x) + g_1(x) + \frac{1}{\lambda} g_2(x) + O(\frac{1}{\lambda^2}) \right)
\]
7.3 Example Airy's Equation \(y'' + \lambda^2 y = 0 \)

Consider \(y = \exp(\lambda g_0 + g_1 + \frac{1}{3} g_2 + ...) \)
\[
y' = \exp[\lambda g_0 + g_1 + \frac{1}{3} g_2 + ..] (\lambda g_0' + g_1' + ..)
\]
\[
y'' = \exp[\lambda g_0 + g_1 + \frac{1}{3} g_2 + ..] (\lambda g_0' + g_1' + ..)^2 + \exp[\lambda g_0 + g_1 + ..] (\lambda g_0'' + g_1'' + \frac{1}{3} g_2'' + ..)
\]
Substitute in ODE and cancel common \(\exp \).

\[
(\lambda g_0' + g_1' + ..)^2 + \lambda g_0'' + g_1'' + .. + \lambda^2 x = 0
\]

Terms of order \(\lambda^2 \)

\[
g_0'' + 2g_0'g_1' = 0
\]

\[
\Rightarrow \quad \frac{1}{2}i x^{-1/2} + 2i x^{1/2} g_1' = 0
\]

\[
\Rightarrow \quad g_1' = \frac{-i}{4x} \Rightarrow g_1 = -\frac{i}{4} \log x + B
\]

[Note: disregard \(A \) as multiplying \(\exp(\lambda x) \)]

Terms order \(\lambda \), with \(g_0 \)

\[
g_0 = \pm i \frac{2}{3} x^{3/2}
\]

(+ term first)

now \(g_0 = -i \frac{2}{3} x^{3/2} \) gives same result [check]

So general solution is of form

\[
y = A \exp \left[i \lambda \frac{2}{3} x^{3/2} - \frac{1}{4} \log x + .. \right] + B \exp \left[-i \lambda \frac{2}{3} x^{3/2} - \frac{1}{4} \log x + .. \right]
\]

Notice \(\exp(-\frac{1}{4} \log x) = x^{-1/4} \) so
\[y(x) = \frac{1}{x^{3/4}} \left(C \cos\left(\frac{2}{3}\lambda x^{3/2}\right) + D \sin\left(\frac{2}{3}\lambda x^{3/2}\right) \right. \\
\left. + O\left(\frac{1}{x^2}\right) \right) \]

If we repeat this for the general case \(r(x)\) then following Simmons & Mann p.77-79 we obtain
\[y(x,\lambda) = \left(\frac{1}{r(x)} \right)^{1/4} + O\left(\frac{1}{\lambda}\right) \right) \left\{ A \cos \lambda \int_a^x \sqrt{r(t)} \, dt + O\left(\frac{1}{\lambda}\right) \\
+ B \sin \lambda \int_a^x \sqrt{r(t)} \, dt + O\left(\frac{1}{\lambda^2}\right) \right\} \]
where \(A, B\) are arbitrary real constants, \(a\) can be any convenient value.

Note: as in MNS any expression \(A e^{i\xi t} + B e^{-i\xi t}\) is real if it equals its conjugate and hence \(A = \overline{B}\) in that case \(A e^{i\xi t} + \overline{B} e^{-i\xi t} = 2 \Re(A \cos \xi t) \neq -2i \Im(A \sin \xi t)\).

But the point is we can just say
\[C \cos \xi t + D \sin \xi t \]
Some real \(C\) and \(D\).
7.3a Example with more complicated λ dependence.

$$y'' + (\lambda^2(1+x)^2 + \frac{\lambda}{1+x})y = 0$$

is not exactly $\lambda^2 r(x)$.

Again try $y = \exp(\lambda g_0 + g_1 + O(\lambda^2))$

giving

$$\lambda g_0'' + g_1'' + \cdots + (\lambda g_0' + g_1' + \lambda r)$$

$$+ \lambda^2(1+x)^2 + \frac{\lambda}{1+x} = 0$$

Terms in λ^2

$$g_0'' + (1+x)^2 = 0$$

$$g_0' = \pm i (1+x)$$

$$g_0 = \pm i (x + \frac{1}{2}x^2)$$

Terms in λ

$$g_0'' + 2g_0'g_1' + \frac{1}{1+x} = 0$$

$$g_0 = + i (x + \frac{1}{2}x^2) \quad (+\text{case})$$

$$g_0' = i (1+x)$$

$$g_0'' = i$$

$$g_1' = \frac{-i}{2(1+x)} + \frac{i}{2(1+x)^2}$$

$$g_1 = -\frac{i}{2} \log(1+x) - \frac{i}{2} \frac{1}{(1+x)}$$

(-case) $g_0 = - i (x + \frac{1}{2}x^2) \quad g_1 = \frac{i}{2} \log(1+x) + \frac{i}{2} \frac{1}{(1+x)}$

Hence general soln is

$$y = A \exp \left\{ i \lambda (x + \frac{x^2}{2}) - \frac{i}{2} \log(1+x) - \frac{i}{2} \frac{1}{1+x} \right\}$$

$$+ B \exp \left\{ -i \lambda (x + \frac{x^2}{2}) - \frac{i}{2} \log(1+x) + \frac{i}{2} \frac{1}{1+x} \right\}$$
Usual simplification

\[y \approx \frac{1}{(1 + x)^{1/2}} \left\{ \cos \left(\frac{\lambda}{2} x^{1/2} \right) - \frac{1}{2} \frac{\lambda}{(1 + x)^{1/2}} \right\} \\
+ D \sin \left(\frac{\lambda}{2} x^{1/2} - \frac{3}{4} \frac{\lambda}{(1 + x)^{1/2}} \right) \]

We can solve more general eqs of form \(y'' + f(x, \lambda) y = 0 \).

7.4 Estimating eigenvalues

Often eigenvalues are more important than eigenfunctions.

We get these estimates by applying the boundary conditions \(y(a) = y(b) = 0 \) to the WKB approximation.

(some \(a, b \))

The Airy example is easy for \(y(a) = y(b) = 0 \). For \(a = 0 \) we see the cosine term vanishes (otherwise soln is unbounded at \(0 \)). The sine term (note this is second order despite the \(\lambda^{1/4} \)) gives us simply \(\frac{2}{3} \lambda = n \pi \), \(n \in \mathbb{N} \).

So \(\lambda \approx \frac{3n\pi}{2} \), \(n \in \mathbb{N} \), but for \(n \) large, \((a) \) we neglected \(O(\lambda^2) \) terms in the WKB approximation.

Let's do a more interesting example.

\[y'' + \lambda^2 (1 + 3 \sin^2 x)^2 y = 0 \quad y(0) = y(1) = 0. \]

\[y \approx \exp \left(\gamma g_0 + g_1 + \ldots \right) \]

\[g_0^2 + (1 + 3 \sin^2 x)^2 = 0 \]

\[g_0 = \pm i \left(1 + 3 \sin^2 x \right) \]

\[g_0 = \pm i \left(1 + 3 \sin^2 \left(\frac{5\pi}{2} - \frac{3}{4} \sin 2x \right) \right) = \pm i \left(\frac{5\pi}{2} - \frac{3}{4} \sin 2x \right) \]

\[g_1 = - \log \left(1 + 3 \sin^2 x \right) \text{ (for both } g_0 \text{)} \]

Hence, \(y \approx \frac{1}{(1 + 3 \sin^2 x)^{1/2}} \left\{ \cos \left(\frac{\lambda}{2} x - \frac{3}{4} \sin 2x \right) + D \sin \lambda \left(\frac{5\pi}{2} - \frac{3}{4} \sin 2x \right) \right\} \)

(Exactly the general result for \(r(x) \) on page)
Now we apply the boundary conditions to obtain the approximate eigenvalues.

\[y(0) = 0 \Rightarrow C = 0 \]
\[y(1) = 0 \Rightarrow D \sin \left(\frac{\pi}{2} x - \frac{3}{4} \sin 2x \right) = 0 \]

Hence

\[\lambda \left(\frac{\pi}{2} - \frac{3}{4} \sin 2 \right) = n \pi \quad n \in \mathbb{N} \]

\[\lambda_n \approx \frac{n \pi}{\pi/2 - 3/4 \sin 2} \]

E.g. for \(n = 5 \), \(\lambda_5 \approx 13.82 \) is the exact value and our approx gives 13.824.

7.4.2 One further example.

\[y'' + \left(\lambda^2 e^{-2x} - 1 \right) y = 0 \quad y(1) = 0, y(\infty) = 0. \]

As before
\[g_0 = -i e^{-x} \]
\[g_1 = \frac{x}{2} \quad \text{for both} + \text{and} - \]

\[y = A \exp \left(\frac{x}{2} \right) + i \lambda e^{-x} + \frac{x}{2} e^{x} + B \exp \left(-i \lambda e^{x/2} \right) \]

\[= e^{x/2} \left[C \cos(\lambda e^{-x}) + D \sin(\lambda e^{-x}) \right] \]

As \(x \to \infty \), \(\cos(\lambda e^{-x}) \to 1 \) so \(C = 0 \).

\[y(1) = 0 \Rightarrow \sin(\lambda e^{-1}) = 0 \quad \lambda_n \approx n \pi e \]

\[\lambda_0 \approx 31.45 e \quad \text{exact} \quad 31.2196 e \]