4 (a) Try \(x = x_0 + \epsilon x_1 + \cdots \)

\[e^0 : \ddot{x}_0 + 2x_0 = 0 \quad , \quad x_0(0) = 1 \quad \Rightarrow \quad x_0 = e^{-2t} \]

\[e^1 : \dot{x}_1 + 2x_1 = x_0^3 = e^{-6t} \quad , \quad x_1(0) = 0 \quad \Rightarrow \quad x_1 = \frac{1}{4} e^{-2t} - \frac{1}{4} e^{-6t} \]

So

\[x = e^{-2t} + \epsilon \left(\frac{1}{4} e^{-2t} - \frac{1}{4} e^{-6t} \right) + O(\epsilon^2) \]

There is no problem with this expansion and it is uniformly valid. In this context “uniformly \(O \)” means the constant in the definition of \(O \) can be chosen independently of \(t \).

(b) Try \(x = x_0 + \epsilon x_1 + \cdots \)

\[e^0 : \ddot{x}_0 = t \quad , \quad x_0(0) = \dot{x}_0(0) = 0 \quad \Rightarrow \quad x_0 = \frac{1}{6} t^3 \]

\[e^1 : \ddot{x}_1 = -2x_0(x_0+1) = -\frac{1}{18} t^6 - \frac{1}{3} t^3 \quad , \quad x_1(0) = 0 = \dot{x}_1(0) = 0 \quad \Rightarrow \quad x_1 = -\frac{t^8}{1008} - \frac{t^5}{60} \]

So

\[x = \frac{1}{6} t^3 + \epsilon \left(-\frac{t^8}{1008} - \frac{t^5}{60} \right) + O(\epsilon^2) \]

which is non-uniform as \(t \to \infty \). In fact it fails when \(t = O(\epsilon^{-\frac{1}{2}}) \).

(c) Try \(x = x_0 + \epsilon x_1 + \cdots \)

\[e^0 : \ddot{x}_0 = 0 \quad , \quad x_0(0) = 1, \dot{x}_0(0) = 0 \quad \Rightarrow \quad x_0 = 1 \]

\[e^1 : \ddot{x}_1 = 1 - \dot{x}_0 = 1 \quad , \quad x_1(0) = 0 = \dot{x}_1(0) = 0 \quad \Rightarrow \quad x_1 = \frac{1}{2} t^2 \]

So

\[x = 1 + \epsilon \left(\frac{1}{2} t^2 \right) + O(\epsilon^2) \]

which is non-uniform as \(t \to \infty \). Problem arises when \(t = O \left(\frac{1}{\sqrt{\epsilon}} \right) \).

5 First solve the homogeneous equation \(\ddot{x} + \epsilon \dot{x} = 0 \) gives the complementary solutions as

\[x = A + B e^{-\epsilon t} \]

Now look for a particular integral of the form \(x_p = Ct + D \Rightarrow x_p = t \). Hence applying the boundary conditions, reveals the exact solution is

\[x = 1 + t + \frac{1}{\epsilon} \left(e^{-\epsilon t} - 1 \right) \]

The difficulty is created by the non-uniformity of \(e^{-\epsilon t} \) as \(t \to \infty \) and \(\epsilon \to 0 \).
The idea is to order the term $f_1(\epsilon), f_2(\epsilon), f_3(\epsilon)$ in such a way that $\frac{f_{n+1}}{f_n} \rightarrow 0$ as $\epsilon \rightarrow 0$. This result is

(a)
\[\log \frac{1}{\epsilon}, \log \left(\log \left(\frac{1}{\epsilon} \right) \right), 1, \epsilon^{1/2} \log \left(\frac{1}{\epsilon} \right), \epsilon^{1/2}, \epsilon \log \frac{1}{\epsilon}, \epsilon^{3/2}, \epsilon^2 \log \frac{1}{\epsilon}, \epsilon^2. \]

(b) Now $\cot \epsilon \sim \frac{1}{\epsilon}$ so the order is
\[\cot \epsilon, \epsilon^{-0.01}, \log \left(\frac{1}{\epsilon} \right), \exp \left(-\frac{1}{\epsilon} \right). \]

It might help you to think of $\epsilon = e^{-n}$ and let $n \rightarrow \infty$, as it is probably easier to spot null sequences than functions that go to zero. If you are stuck try putting in small values for ϵ, or plotting graphs of the functions. When you think you have the answer test it by working out the limits of the ratios. You probably know useful things like $x \log x \rightarrow 0$ as $x \rightarrow 0$ (see eg Math10131, Problems 3 q 6).