This EBL really is much more “enquiry based”. We have n’t done 2nd order ODEs
yet in the lecture so you get to try some things yourself.

A constant coefficient 2nd order linear ODE is of the form

\[a \frac{d^2y}{dt^2} + b \frac{dy}{dt} + cy = f \]

where \(y(t) \) and \(f(t) \) are functions of \(t \) and \(a \neq 0 \). We will concentrate on \(f = 0 \). There
are lots of example in HELM 19.3

1. Consider the ODE

\[\frac{d^2y}{dt^2} + \omega^2 y = 0 \]

where \(\omega \) is a non zero constant.

(a) Check that \(y(t) = \sin \omega t \) and \(y(t) = \cos \omega t \) both satisfy the ODE.
(b) Check that \(y(t) = A \sin \omega t + B \cos \omega t \) is a solution for any \(A \) and \(B \).

2. Consider the ODE

\[\frac{d^2y}{dt^2} - k^2 y = 0 \]

where \(k \) is a non zero constant.

(a) Check that \(y(t) = e^{kt} \) and \(y(t) = e^{-kt} \) both satisfy the ODE.
(b) Check that \(y(t) = Ae^{kt} + Be^{-kt} \) is a solution for any \(A \) and \(B \).

3. Consider the ODE

\[\frac{d^2y}{dt^2} - \frac{dy}{dt} - 6y = 0 \]

(a) Try a solution of the form \(y = e^{kt} \). Show that for it to be a solution we must
have \(k^2 - k - 6 = 0 \)
(b) Solve the quadratic and write down two solutions of the ODE.

The equation for \(k \) is called the auxiliary equation and \(y = e^{kt} \) is called a trial
solution

4. Find the auxiliary equation for the following ODEs and find the solutions \(k \) for
these auxiliary equations. Note if there are one or two solutions and if they are
real or complex.

(a)

\[\frac{d^2y}{dt^2} - 9y = 0 \]

(b)

\[\frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y = 0 \]
(c) \[
\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0
\]

(d) \[
\frac{d^2y}{dt^2} + 9y = 0
\]

5. Considering 4(d) above the auxiliary equation tells us the solutions are e^{3it} and e^{-3it}. Using the fact that $e^{i\theta} = \cos \theta + i\sin \theta$ show that

\[e^{3it} + e^{-3it} = 2\cos 3t\]

and

\[e^{3it} - e^{-3it} = 2i\sin 3t.\]

In general if we have a solution $y = Ce^{\beta t} + De^{-\beta t}$ then $y = A\cos \beta t + B\sin \beta t$ where $A = (C + D)$ and $B = (C - D)/i$ is also a solution.

6. In 4(c) we only get one solution e^{-t}. Check that in this case te^{-t} is also a solution.

In general if the auxiliary equation has complex roots $k = \alpha \pm i\beta$ then the real solutions are of the form $y(t) = e^{\alpha t}(A\cos \beta t + B\sin \beta t)$

7. (a) Check that the auxiliary equation of $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 4y = 0$ has roots $k = -1\pm \sqrt{3}i$.

(b) The general solution is going to be $y(t) = e^{-t}(A\cos \sqrt{3}t + B\sin \sqrt{3}t)$ check that the special case $y(t) = e^{-t}\cos \sqrt{3}t$ is actually a solution.