1. Let $A \in \mathbb{R}^{m \times n}$ be a matrix of full rank and $b \in \mathbb{R}^m$ be a vector
 (a) i. Assuming $m \geq n$ derive a formula for

 $$x_{MP} = \arg \min_{x \in \mathbb{R}^n} ||Ax - b||^2$$

 and explain why the minimum is unique.

 ii. Now assuming $n \geq m$ we define

 $$x_{MP} = A^T (AA^T)^{-1} b.$$

 Show that this satisfies $Ax_{MP} = b$.

 Show that for any $v \in \text{null}(A)$, $||x_{MP} + v|| \geq ||x_{MP}||$. What minimization problem does x_{MP} solve?

 (b) Again taking $m \geq n$, an iteration scheme is defined by

 $$x_0 = 0$$

 $$x_{k+1} = x_k + \tau A^T (b - Ax_k)$$

 i. Show by induction that

 $$x_k = \left(I - (I - \tau A^T A)^k \right) (A^T A)^{-1} A^T b$$

 ii. Given the singular value decomposition $A = U \Sigma V^T$ find a diagonal matrix D_k such that

 $$x_k = VD_k U^T b$$

 and hence show that for $0 < \tau < 2/\sigma_1^2$, $x_k \to x_{MP}$ as $k \to \infty$, where σ_1 is the largest singular value of A.

 1
2. (a) i. State three conditions which are generally taken to characterise a well-posed problem

ii. Let $K : \mathcal{H}_1 \rightarrow \mathcal{H}_2$ be a linear operator between (infinite dimensional) Hilbert spaces, define the terms *bounded* and *compact* as applied to K. Show that the inverse of a compact operator is not bounded.

iii. Let $K : L^2(0, 1) \rightarrow L^2(0, 1)$ be the integral operator

$$K[g](x) = \int_0^1 k(x, y) f(y) \, dy.$$

State conditions on the kernel function k which guarantee that K is compact.

(b) An integral operator $K : L^2(0, 1) \rightarrow L^2(0, 1)$ has kernel function

$$k(x, y) = \begin{cases}
 x(y - 1) & x < y \\
 y(x - 1) & x \geq y
\end{cases}$$

i. Given $f(0) = f(1) = 0$ show that for $f \in C^2(0, 1)$, $K[f''] = f$.

ii. Find the adjoint K^* and verify that $u_m(x) = -\sqrt{2} \sin(m\pi x)$ is a right singular function of K, giving the left singular functions and singular values. Hence or otherwise show that the operator K is compact.

iii. Is the inverse problem of determination of $f \in L^2(0, 1)$ from $g = K[f] \in L^2(0, 1)$ moderately or severely ill-posed? What choice of Hilbert space for the domain would make the inverse problem well posed?
3. (a) Let $A \in \mathbb{R}^{m \times n}$ be of full rank, $b \in \mathbb{R}^m$, $x_0 \in \mathbb{R}^n$, $\alpha > 0$ and

$$\tilde{A} = \begin{pmatrix} A \\ \alpha I \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} b \\ \alpha x_0 \end{pmatrix}.$$

Show that $x_T = \tilde{A}^\dagger \tilde{b}$ is the unique minimizer of

$$||Ax - b||^2 + \alpha^2 ||x - x_0||^2$$

stating carefully any properties of the Moore-Penrose generalized inverse you use.

(b) Show that an alternative formula for the minimizer in (i) is

$$x_T = x_0 + A^T (AA^T + \alpha^2 I)^{-1} (b - Ax_0).$$

(c) Use a suitable substitution to find a formula for the Tikhonov regularised solution using more general norms:

$$x_{GT} = \arg \min_{x \in \mathbb{R}^n} ||Ax - b||_Q^2 + \alpha^2 ||x - x_0||_P^2$$

where $P \in \mathbb{R}^{n \times n}$ and $Q \in \mathbb{R}^{m \times m}$ are positive definite symmetric matrices and $||x||_P^2 = x^T P x$.

(d) In a practical problem you are required to solve $Ax = b$ where A is ill-conditioned and b contaminated by experimental error. Discuss briefly strategies which might be used to select P, Q, x_0 and α in the generalized Tikhonov regularised solution (your answer should be no more than half a page).
4. (a) i. Define the Fourier transform \hat{f} and convolution $f \ast g$ where f and g are suitable functions on \mathbb{R}.

ii. Let

\[g(x) = \begin{cases} 0 & |x| > 1/2 \\ 1 & |x| \leq 1/2 \end{cases} \]

Find the Fourier transform of g, and the convolution $g \ast g$.
Find the Fourier transform of the convolution $\hat{g} \ast \hat{g}$ stating any results you use.

(b) The Radon transform of a function f on \mathbb{R}^2 is defined as the line integral

\[R[f](\Theta, s) = R_{\Theta}[f](s) = \int_{\Theta \cdot x = s} f(x) \, dx \]

where $\Theta \in S^1$ is a unit vector in \mathbb{R}^2 and $s \in \mathbb{R}$.

i. Show that

\[\hat{R}_\Theta[f](\sigma) = c \hat{f}(\sigma \Theta) \]

for a constant c.

ii. Find the formal adjoint $R^*[g](x)$ of R applied to a function g on $S^1 \times \mathbb{R}$ and evaluated at a point $x \in \mathbb{R}^2$

iii. Define the term back-projection as used by the computerized tomography community.
Given that

\[(RR^* + \alpha^2)^{-1}[g] = h_\alpha \ast g \]

for some function h_α, justify the assertion that Tikhonov regularization of the inverse Radon transform is equivalent to back-projecting filtered data.
Is there any mathematical justification for using simply the back-projection of the data as a reconstruction algorithm?