1.
 i) Define the terms *fixed point* and *periodic point* (of a dynamical system).
 Define the *prime period* of a periodic point.

 ii) Let \(S \) be a set with a finite number of elements, and let \(f: S \to S \) be a mapping.
 Show that \(S \) contains at least one periodic orbit (which could be a fixed point).
 Hence (or otherwise) show that if there is no nonempty subset \(T \subset S \) (except \(S \) itself) such that \(fT = T \), then \(S \) consists solely of a single periodic orbit.

 iii) Let \(f: X \to X \) be a mapping of an arbitrary set \(X \), and let \(x \) be a periodic point
 of \(f \). Let \(p_1, p_2, \ldots \) be the periods of \(x \), with \(p_1 < p_2 < \ldots \). Show that \(p_2, p_3, \ldots \) are all multiples of \(p_1 \).

 iv) Let \(S_n \) be the set of strings of 0’s and 1’s of length \(n \). (Thus \(S_3 \) contains
 000, 001, 011, etc.). Let \(f: S_n \to S_n \) be the mapping that moves the leftmost
 element of a string to its right hand end. (Thus \(f(001) = 010, f(101) = 011 \)
 etc.).
 Show that \(f: S_n \to S_n \) has precisely two fixed points whatever the value of \(n \).
 Show that for any \(s \in S_n \), \(s \) is a period \(n \) point of \(S_n \). For what values of \(n \)
 does \(f: S_n \to S_n \) have periodic points (other than fixed points) whose prime
 period is not \(n \)? (Justify your answer.)
2.

 i) Let \(f: \mathbb{R} \to \mathbb{R} \) be a \(C^1 \) function, and let \(x_s \) be a fixed point of \(f \). Say what it means for \(x_s \) to be a hyperbolic fixed point. Show that if \(|f'(x_s)| < 1 \) then there is an interval \(U = (x_s - \varepsilon, x_s + \varepsilon) \) such that, for every \(x_0 \in U \),

\[
\left| \frac{x_{n+1} - x_s}{x_n - x_s} \right| \leq A < 1
\]

for all \(n = 0, 1, \ldots \). (Here, as usual, \(x_n = f^n(x_0) \), and \(A \) is a constant.)

ii) A superstable periodic orbit is one that contains a critical (i.e. stationary) point of \(f \). Show that if \(x_s \) is a superstable fixed point then there is an interval \(U \), as above, such that, for every \(x_0 \in U \),

\[
\left| \frac{x_{n+1} - x_s}{x_n - x_s} \right| \to 0
\]

for all \(n = 0, 1, \ldots \).

iii) For the logistic map \(F_\mu(x) = \mu x(1 - x) \)

(a) Find the value of \(\mu \) for which the nonzero fixed point \(p_\mu \) is superstable.

(b) By considering the position of the critical point of \(F_\mu \) show that the value of \(\mu \) for which the period 2 orbit is superstable satisfies the equation \(\mu^3 - 4\mu^2 + 8 = 0 \). Prove that this equation has a single real root in the range \(3 \leq \mu \leq 1 + \sqrt{6} \).
3. Consider the parameterized family of maps \(f_\lambda : \mathbb{R} \rightarrow \mathbb{R} \) where \(f_\lambda(x) = x^3 - \lambda x \)

\(i) \) Sketch graphs of \(f_\lambda \) for \(\lambda < -1, \lambda = 0 \) and \(\lambda > 1 \).

\(ii) \) Find all the fixed points of \(f_\lambda \) and the values of \(\lambda \) for which each exists.

Sketch a bifurcation diagram for a small interval of \(\lambda \) around \(\lambda = -1 \), indicating both the stable and unstable fixed points (and making clear which are which). What kind of bifurcation takes place at \(\lambda = -1 \)?

\(iii) \) At what value of \(\lambda \) does the fixed point at 0 undergo a period doubling bifurcation?

Show that if \(x = p \) is a period 2 point of \(f_\lambda \) then so is \(x = -p \). Assuming these together form a period 2 orbit, find \(p \) as a function of \(\lambda \). Show that \(p \) does not undergo any further period doubling bifurcations, however large \(\lambda \) is made.

\(iv) \) Now consider the family \(f_\lambda(x) = x^3 - \lambda x + \varepsilon \) where \(\varepsilon \) is a small positive constant. Sketch a bifurcation diagram around \(\lambda = -1 \), showing how it differs from that in \(ii) \). (You do not need to give a rigorous justification of this sketch.) What new bifurcation has appeared?
4. Consider the logistic map \(F_\mu : \mathbb{R} \rightarrow \mathbb{R} \), \(F_\mu (x) = \mu x (1 - x) \), where \(\mu > 4 \).

 i) Sketch the graph of \(F_\mu \).

 ii) Some points in the interval \([0, 1]\) have orbits that eventually leave the interval. If \(x \) is such a point, what happens to \(F_\mu^n(x) \) as \(n \rightarrow \infty \)? Illustrate this using graphical analysis.

 iii) Show that the set of \(x \in [0, 1] \) such that \(F_\mu(x) \in [0, 1] \) consists of two intervals (say \(I_0 \) and \(I_1 \)). Find the intervals \(I_0 \) and \(I_1 \) (i.e. find their end points).

 iv) Show that there is a value of \(\mu \), say \(\mu_* \), such that if \(\mu > \mu_* \) then \(|F'_\mu(x)| > 1 \) for all \(x \in I_0 \cup I_1 \). What is the smallest value we can take for \(\mu_* \)?

 v) Let \(\Lambda \) be the set of points in \([0, 1]\) which never leave it under iteration of \(F_\mu \) (i.e. \(\Lambda = \{ x \mid F_\mu^n(x) \in [0, 1], n = 0, 1, 2, \ldots \} \)). Let \(\Sigma_2 \) be the sequence space of two symbols (0 and 1). Define the map \(h : \Lambda \rightarrow \Sigma_2 \), \(h(x) = s_1 s_2 s_3 \ldots \), by saying \(s_i = 0 \) if \(F_\mu^i(x) \in I_0 \) and \(s_i = 1 \) if \(F_\mu^i(x) \in I_1 \). If \(\mu > \mu_* \) show using iv) (or otherwise) that \(h \) is injective.