1. Consider the autonomous differential equation

\[
\frac{dx}{dt} = F(x) \tag{1}
\]

where \(x \in \mathbb{R}^n \). Assume that for any \(x_0 \in \mathbb{R}^n \) and \(t \in \mathbb{R} \) there is a unique solution passing through \(x_0 \) at \(t_0 \), and the solution exists for all time.

\(i \) What is meant by ‘autonomous’?

\(ii \) Show that if \(x(t) \) is a solution then so is \(y(t) = x(t + \tau) \) for any (fixed) \(\tau \in \mathbb{R} \). Write down a condition that \(y(t) \) satisfies.

\(iii \) Give a definition of the time \(t \) map, \(\phi_t \), of the system (where \(t \in \mathbb{R} \)). What is the flow of the system?

Use the result of \(ii \) to show that \(\phi_s \circ \phi_t = \phi_{t+s} \). What function is \(\phi_0 \)?

\(iv \) The differential equation \(\frac{dx}{dt} = (a - x)x \), where \(x \in \mathbb{R} \) and \(a \) is a constant, with initial condition \(x(0) = x_0 \), has the solution

\[
x(t) = \frac{ax_0e^{at}}{a-x_0(1-e^{at})}
\]

Write down the time \(t \) map and use the formula to show that \(\phi_s \circ \phi_t = \phi_{t+s} \).

\(v \) Show that if equation (1) is linear (i.e. \(F(x + y) = F(x) + F(y) \) and \(F(ax) = aF(x) \) for all \(x, y \in \mathbb{R}^n \) and constant \(a \in \mathbb{R} \)) then \(\phi_t : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is linear.
2. \(i \) Let \(f: \mathbb{R} \to \mathbb{R} \) and let \(p \) be a fixed point of \(f \). Define asymptotic stability of \(p \). Show that if \(f \) is \(C^1 \) then \(|f'(p)| < 1 \) implies that the fixed point \(p \) is asymptotically stable.

\(ii \) Define \(f_\lambda: [0, \infty) \to [0, \infty) \) by \(f_\lambda(x) = \lambda x e^{-x} \), where \(\lambda > 0 \).

\(a \) Sketch a graph of this function.

\(b \) Show 0 is a fixed point of \(f_\lambda \) for all \(\lambda \). Show that for \(\lambda > 1 \) there is another fixed point, \(p_\lambda \), and find an expression for \(p_\lambda \) in terms of \(\lambda \). Show that for \(\lambda = 3/2 \), \(p_\lambda \) is asymptotically stable.

\(c \) As \(\lambda \) is increased from 0, \(p_\lambda \) undergoes a period doubling bifurcation. Find the value of \(\lambda \) at which this occurs. Find the value of \(p_\lambda \) when the bifurcation occurs.

\(d \) Show that if \(q_\lambda \) is a period 2 point of \(f_\lambda \), and \(q_\lambda \neq 0 \), then it satisfies the equation

\[q_\lambda (\lambda e^{-q_\lambda} + 1) = 2 \log_e \lambda \]

Assuming (without proof) that this equation cannot have more than three solutions, show that there is no more than one orbit of prime period 2 no matter how large \(\lambda \) is made.

3. \(i \) Let \(f: S \to S \) be a discrete time dynamical system. Say what is meant by a fixed point (of \(f \)), a period \(n \) point and a prime period \(n \) point.

\(ii \) Let \(f: \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = ax + b \) where \(a \) and \(b \) are constants, and \(a \neq 1 \).

\(a \) Find the fixed point, \(x_* \), of \(f \).

\(b \) Find a formula for \(f^n(x) \) and use it to show that if \(|a| < 1 \) then \(f^n(x) \to x_* \) as \(n \to \infty \) for all \(x \). Also show that if \(|a| > 1 \) and \(x \neq x_* \), then \(|f^n(x)| \to \infty \) as \(n \to \infty \).

\(iii \) Let \(f: \mathbb{R} \to \mathbb{R} \) be continuous and let \(O = \{x_0, x_1, \ldots, x_{n-1}\} \) be a prime period \(n \) orbit of \(f \). Let \(a \) and \(b \) be points in \(O \) such that \(a < b \) and there is no \(x \in O \) such that \(a < x < b \). (\(a \) and \(b \) are adjacent when the orbit is plotted on the real line.)

\(a \) Show that the number of points in \(O \) which are greater than \(a \) is one more than the number which are greater than \(b \).

\(b \) Use this fact to show that there is an integer \(m \), with \(0 < m < n \), such that \(f^m(a) > a \) and \(f^m(b) < b \).
(c) Hence show that between a and b there is a periodic point of period less than n. (You will need to use the Intermediate Value Theorem.)

4. i) Let Σ_2 be the set of symbol sequences $\mathbf{s} = s_0s_1s_2 \ldots$ where $s_i = 0$ or 1 for all i, and say $\sigma: \Sigma_2 \to \Sigma_2$ is the shift map. Let the distance $d(\mathbf{s}, \mathbf{t})$ between points in Σ_2 be given by

$$d(\mathbf{s}, \mathbf{t}) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^i}$$

Consider the subset $T \subset \Sigma_2$ containing sequences such that if $s_i = 0$ then $s_{i+1} = 1$ (i.e. every 0 is followed by a 1).

(a) Show that if $\mathbf{s} \in T$ then $\sigma(\mathbf{s}) \in T$.

(b) Show that T contains period n points of σ for every positive integer n. Show that periodic points are dense in T (i.e. given any $\mathbf{t} \in T$ there is a periodic point $\mathbf{s} \in T$ arbitrarily close to \mathbf{t}).

(c) Show that if $\mathbf{s} \in T$ and $\mathbf{t} \notin T$ then for some n, $d(\sigma^n(\mathbf{s}), \sigma^n(\mathbf{t})) \geq 1/2$.

ii) Let $F_\mu: \mathbb{R} \to \mathbb{R}$ be the function $F_\mu(x) = \mu x (1-x)$, where $\mu > 4$, and let $I = [0, 1]$.

(a) Sketch a graph of F_μ on I and use it to show that there are two closed intervals, I_0 and I_1, such that $F_\mu I_0 = I$ and $F_\mu I_1 = I$. Find I_0 and I_1.

(b) Let Λ be the set of points x in I such that $F_\mu^n(x) \in I$ for all n. Show $\Lambda \subset I_0 \cup I_1$.

(c) Define $h: \Lambda \to \Sigma_2$ by $h(x) = \mathbf{s}$ where $s_i = 0$ if $F_\mu^i(x) \in I_0$ and $s_i = 1$ if $F_\mu^i(x) \in I_1$, for $i = 0, 1, \ldots$. For sufficiently large μ there is a constant $A > 1$ (depending on μ) such that $|F_\mu'(x)| > A$ for all $x \in I_0 \cup I_1$. Show that for μ this large, h is injective.

(d) Show that $\sigma \circ h = h \circ F_\mu$.

END OF PAPER