Date: Thursday, 29th January 1998

Time: 2.00–4.00 p.m.

Answer THREE questions.
1. \(i\) Consider continuous time dynamical systems of the form

\[\frac{dx}{dt} = F(x,t) \]

where \(x \in \mathbb{R}^n\) and \(t \in \mathbb{R}\). Describe the difference between autonomous and non-autonomous systems. Explain what is meant by a ‘periodically forced’ system.

\(ii\) Show how an angle variable may be used to convert a periodically forced system into an autonomous one. Explain what is meant by the ‘augmented state space’. For the case \(x \in \mathbb{R}\), describe the nature of the augmented state space.

\(iii\) Consider the system

\[\frac{dx}{dt} = -x + \alpha \cos t \]

where \(x \in \mathbb{R}\), and \(\alpha \in \mathbb{R}\) is a constant. Show, by substituting in to the differential equation, that the solution satisfying \(x(0) = x_0\) is

\[x(t) = \left(x_0 - \frac{\alpha}{2} \right) e^{-t} + \frac{\alpha}{2} (\cos t + \sin t) \]

Using the angle variable \(\theta = t \mod 2\pi\) express this system as an autonomous, augmented system.

Let \(\Sigma\) be the subset of the augmented state space defined by \(\Sigma = \{(x,\theta) : \theta = 0\}\), and let \(\phi_{2\pi}\) be the time \(2\pi\) map of the augmented system. Show that \(\phi_{2\pi}\Sigma \subset \Sigma\). If \((x,0) \in \Sigma\) write down an expression for \(\phi_{2\pi}(x,0)\), and use it to show that \((\alpha/2,0)\) is a fixed point of \(\phi_{2\pi}\Sigma \rightarrow \Sigma\)
2.
 i) Let $I \subset \mathbb{R}$ be the closed interval $[a, b]$ and $F: I \rightarrow I$ be continuous. Show that if $F(x) > x$ for all $x \in (a, b)$ and $F(b) = b$ then, for all $x \in I$, $F^n(x) \rightarrow b$ as $n \rightarrow \infty$. Sketch a cobweb diagram to illustrate this situation.

 ii) (a) Define $F_\mu: \mathbb{R} \rightarrow \mathbb{R}$ by $F_\mu(x) = \mu \cos x$, where $\mu > 0$. Using the Intermediate Value Theorem—which you should state clearly—show that F has a fixed point in the interval $[0, \pi/2]$. Sketch a graph of F_μ to show that there are no other fixed points in this interval. Let p_μ be the fixed point of F_μ in $[0, \pi/2]$. For $\mu = 1$ show that p_μ is attracting, stating any results you use.

 (b) As μ is increased from 0, p_μ undergoes a period doubling bifurcation. If μ_* is the value of μ at which the bifurcation occurs, and p_{μ_*} the corresponding fixed point, show that

 \[
 \tan(p_{\mu_*}) = \frac{1}{p_{\mu_*}} \quad \text{and} \quad \mu_* = \sqrt{p_{\mu_*}^2 + 1}
 \]

3.
 i) Let $f: X \rightarrow X$ and $g: Y \rightarrow Y$ be discrete time dynamical systems. Explain what a conjugacy between f and g is. Show that if $h: X \rightarrow Y$ is a conjugacy between f and g, and $x \in X$ is a periodic point of f with prime period n, then $h(x)$ is a prime period n point of g.

 ii) Let Σ_2 be the set of symbol sequences $s = s_1 s_2 s_3 \ldots$ where $s_i = 0$ or 1 for all i, but where sequences ending in an infinite sequence of 1’s are excluded. Define the shift map $\sigma: \Sigma_2 \rightarrow \Sigma_2$. Show that repeating sequences correspond to periodic points of σ, and that there are $2^n - 1$ periodic points of σ having period n.

 iii) Consider the doubling map $f: [0, 1) \rightarrow [0, 1)$ where

 \[
 f(x) = \begin{cases}
 2x & \text{if } 0 \leq x < 1/2 \\
 2x - 1 & \text{if } 1/2 \leq x < 1
 \end{cases}
 \]

 Let $h: \Sigma_2 \rightarrow [0, 1)$ be defined by

 \[
 h(s) = \sum_{i=1}^{\infty} \frac{s_i}{2^i}
 \]

 Show that h is a conjugacy between f and σ. (Assume without proof that h is invertible.)

 Prove that there is only one trajectory of f which lies inside the interval $[1/4, 3/4)$, and find the trajectory.

P.T.O.
4. Let \(f: [0, 1] \rightarrow [0, 1] \) be continuous. Define a new function \(F: [0, 1] \rightarrow [0, 1] \), depending on \(f \), by

\[
F(x) = \begin{cases}
\frac{1}{3}f(3x) + \frac{2}{3} & \text{if } 0 \leq x \leq 1/3 \\
-(f(1) + 2)(x - \frac{2}{3}) & \text{if } 1/3 \leq x \leq 2/3 \\
x - \frac{2}{3} & \text{if } 2/3 \leq x \leq 1
\end{cases}
\]

i) Show that the definitions of \(F \) on the intervals \([0, 1/3]\) and \([1/3, 2/3]\) agree at \(x = 1/3 \). Similarly, show that the definitions on the intervals \([1/3, 2/3]\) and \([2/3, 1]\) agree at \(x = 2/3 \).

ii) For the case \(f(x) = 4x(1-x) \), sketch a graph of the corresponding \(F(x) \). Your graph should indicate the values of \(F(x) \) at \(x = 0, 1/3, 2/3 \) and 1.

iii) For a general (continuous) \(f:[0, 1] \rightarrow [0, 1] \), show that if \(x \in [0, 1] \) and \(y = f(x) \), then \(F^2(x/3) = y/3 \).

iv) Let \(x \in [0, 1] \) be a periodic point of \(f \), with prime period \(n \).

(a) Show that \(x/3 \) is a periodic point of \(F \) with period \(2n \).

(b) Show that it has prime period \(2n \). (Hint: consider the possibilities that the prime period of \(x/3 \) is even and odd separately.)