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FOURIER ANALYSIS AND LEBESGUE INTEGRATION

Chapter 2: Countability and Cantor Sets

Countable and Uncountable Sets

The concept of countability will be important in this course and we shall revise it here. A
set E is said to be countable if it can be put in one-to-one correspondence with a subset
of N = {1, 2, 3, . . . }. More mathematically, E is countable if there exists a surjection
f : N → E, or E is empty.1

Such sets are either

(a) finite sets; or
(b) countably infinite sets: these can be put into bijection (one-to-one correspondence)

with N itself.

A simpler way to describe countable sets is that their elements can be written as a sequence:
{x1, x2, x3, . . . }. If the set is finite, this is only a finite sequence (going up to xn, say) but
if the set is infinite, it is an infinite sequence.
If a set is not countable then we say it is uncountable.
Here are some standard results about countability.

Proposition 2.1.

(i) Let E be a countable set and let f : E → F be a surjection. Then F is countable.
(ii) Any subset of a countable set is countable.

Proof. Exercise. �

Proposition 2.2. Z is countable.

Proof. A bijection between N and Z can be defined as follows:

1 2 3 4 5
↕ ↕ ↕ ↕ ↕
0 1 −1 2 −2

· · ·

�

1In what follows this case should often be treated separately but we neglect to do so since it is trivial. You
can check that everything still works.
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Proposition 2.3. If E and F are countable then

(i) E ∪ F is countable.
(ii) E × F is countable.

Proof. The cases when one of E,F are empty are trivial. Otherwise there exist surjections
f : N → E and g : N → F .

(i) We can define a map h : N → E ∪ F by

h(n) =

{
f
(
n
2

)
if n is even

g
(
n+1
2

)
if n is odd,

and it is easy to check that this is a surjection from N onto E ∪ F .

(ii) Define h : N × N → E × F by h(m,n) = (f(m), g(n)). Again, it is easy to check that
this is a surjection. So the result reduces to showing that N × N is countable (since then
there is a surjection ϕ : N → N× N, making h ◦ ϕ : N → E × F a surjection).
Using the array

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
(2, 1) (2, 2) (2, 3) (2, 4) · · ·
(3, 1) (3, 2) (3, 3) (3, 4) · · ·
(4, 1) (4, 2) (4, 3) (4, 4) · · ·
...

...
...

...
. . .

one can construct a bijection ϕ : N → N × N by “diagonal enumeration”: ϕ(1) =
(1, 1), ϕ(2) = (1, 2), ϕ(3) = (2, 1), ϕ(4) = (1, 3), ϕ(5) = (2, 2), ϕ(6) = (3, 1), etc. �
Proposition 2.4. Q is countable.

Proof. Consider the array
1 2 3 4 · · ·
1
2

2
2

3
2

4
2 · · ·

1
3

2
3

3
3

4
3 · · ·

1
4

2
4

3
4

4
4 · · ·

...
...

...
...

. . .

This contains the set Q> of all rational numbers > 0, with some duplications (e.g. 1 =
2
2 = 3

3 = 4
4 = · · · ). Defining a surjection from N onto Q> by the diagonal method as above

shows that Q> is countable. Similarly, Q< is countable so since Q = Q> ∪Q< ∪ {0}, Q is
countable by Proposition 2.3(i). �
More generally, we have:

Proposition 2.5. If En is countable, n ∈ N, then E =
∪∞

n=1 En is countable.

Proof. Omitted.2 �

2Intuitively, we take a surjection hn : N → En for each n and note that g : N× N →
∪∞

n=1 En defined by
g(n,m) = hn(m) is a surjection. Hence

∪∞
n=1 En is countable by Proposition 2.1, since N×N is countable

by Proposition 2.3. In general the existence of a set of surjections as above can only be guaranteed by

some form of the Axiom of Choice. In this course (in common with most areas of mathematics) we assume
the Axiom of Choice, hence the result.

2



Proposition 2.6. R is uncountable.

Proof. Every real number can be represented by a decimal expansion. For simplicity, just
consider the numbers in [0, 1). Such a number has an expansion

0.a1a2a3a4 . . .

where an ∈ {0, 1, 2, . . . , 9}. Sometimes this expansion is not unique (e.g. 0.1000 . . . =
0.0999 . . . ) but choosing to represent such numbers by the expansion ending in 000...
rather than 999... makes it unique (exercise).
Suppose [0, 1) were countable. Then we could list its elements (i.e., put them into one-to-
one correspondence with N):

x1 = 0.a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 . . .

x2 = 0.a
(2)
1 a

(2)
2 a

(2)
3 a

(2)
4 . . .

x3 = 0.a
(3)
1 a

(3)
2 a

(3)
3 a

(3)
4 . . .

x4 = 0.a
(4)
1 a

(4)
2 a

(4)
3 a

(4)
4 . . .

...

But it is possible to construct a number y not in this list: define

bn =

{
5 if a

(n)
n ̸= 5

6 if a
(n)
n = 5

.

Then y = 0.b1b2b3b4 . . . is not in the above list, since it differs from xn in the nth decimal
place. Therefore [0, 1) is uncountable and hence R is uncountable. �

The Middle Third Cantor Set

We shall now describe a more complicated subset of R which is uncountable. This set is
called the Middle Third Cantor set and we shall return to it later in the course.

Geometric description. We start with the unit interval

C0 = [0, 1].

Now define a new set

C1 = C0\(1/3, 2/3) = [0, 1/3] ∪ [2/3, 1],

i.e., we obtain C1 by deleting the open middle third of C0.

Next we obtain a new set C2 by deleting the open middle thirds of each of the intervals
making up C1,

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

Continue in this way to obtain sets Cn, n ≥ 0, where Cn consists of 2n disjoint closed
intervals of length 3−n, formed by deleting the middle thirds of the intervals making up
Cn−1.

The Middle Third Cantor set is defined to be the intersection of these sets:

C =

∞∩
n=1

Cn.

3



Arithmetic description. We also have

C =

{
x ∈ [0, 1] : x =

∞∑
n=1

an3
−n, an ∈ {0, 2}, for all n ≥ 1

}
.

(Since 0 ≤ an3
−n ≤ 2 · 3−n, the series converge.) Hence we might also describe C as the

set of reals with a ternary expansion

0.a1a2 . . . an . . .

such that an = 0 or 2, for all n ≥ 1.

Lemma 2.7. Let an, bn ∈ {0, 2} for n ∈ N and let x =
∑∞

n=1 an3
−n, y =

∑∞
n=1 bn3

−n.
Suppose there exists at least one m ∈ N such that am ̸= bm. Then x ̸= y.

Proof. Let M = min{n ∈ N : an ̸= bn}, so that an = bn, for n < M . We have

x− y = (aM − bM )3−M +
∞∑

n=M+1

(an − bn)3
−n.

Recall that, for α, β ∈ R, |α+ β| ≥ |α| − |β|, so

|x− y| ≥ |aM − bM |3−M −

∣∣∣∣∣
∞∑

n=M+1

(an − bn)3
−n

∣∣∣∣∣
≥ 2 · 3−M −

∞∑
n=M+1

|an − bn|3−n

≥ 2 · 3−M −
∞∑

n=M+1

2 · 3−n

= 2 · 3−M − 2
3−(M+1)

1− 1
3

= 2 · 3−M − 3−M = 3−M > 0.

Hence x ̸= y. �
Corollary 2.8. The formula

∞∑
n=1

an3
−n 7→ (an)

∞
n=1

gives a well-defined bijective map between C and the set S of all sequences (an)
∞
n=1, where

an ∈ {0, 2}, for all n ∈ N.

Theorem 2.9. The Middle Third Cantor set C is uncountable.

Proof. S is clearly in bijection with the set {0, 1}N, which is shown to be uncountable in an
exercise. Thus S is uncountable. From Corollary 2.8, it follows that C is uncountable. �
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Revision of sup and inf.

For ∅ ̸= E ⊂ R, we say that m ∈ R is an upper bound of E if, for all x ∈ E, x ≤ m. We
write U(E) for the set of all upper bounds of E:

U(E) = {m ∈ R : ∀x ∈ E, x ≤ m } .

We say that E is bounded above if U(E) ̸= ∅; if U(E) = ∅ then we say that E is unbounded
above.

Similarly, we say that l ∈ R is a lower bound of E if, for all x ∈ E, x ≥ l and define L(E)
to be the set of all lower bounds of E:

L(E) = {l ∈ R : ∀x ∈ E, l ≤ x } .

We say that E is bounded below if L(E) ̸= ∅; if L(E) = ∅ then we say that E is unbounded
below.

The real numbers R have the following completeness property:

(1) if ∅ ̸= E ⊂ R, with E bounded above, then U(E) contains a smallest member, i.e.,
there exists m ∈ U(E) such that, for all y ∈ U(E), m ≤ y. We write m = supE
(or sometimes l.u.b. E);

(2) if ∅ ≠ E ⊂ R, with E bounded below, then L(E) contains a greatest member, i.e.,
there exists l ∈ L(E) such that, for all y ∈ L(E), y ≤ l. We write l = inf E (or
sometimes g.l.b. E).

If E is unbounded above then we write supE = +∞ and if E is unbounded below then
we write inf E = −∞.

Proposition 2.10. Let E ⊂ R be bounded above. Then

m = supE ⇐⇒
{

m ∈ U(E), and

∀ϵ > 0 ∃x ∈ E such that m− ϵ < x.

Proof. Exercise. �
Proposition 2.11. Let E ⊂ R be bounded below. Then

l = inf E ⇐⇒
{

l ∈ L(E), and

∀ϵ > 0 ∃x ∈ E such that x < l + ϵ.

Proof. Exercise. �
Proposition 2.12. Suppose that ∅ ≠ E ⊂ F ⊂ R. Then supE ≤ supF and inf F ≤ inf E.

Proof. We shall prove the inequality for sup; the argument for inf is similar. If F is
unbounded above then the inequality is obvious, so we assume that F is bounded above
(so U(F ) ̸= ∅). Let m ∈ U(F ), then, for all f ∈ F , f ≤ m. Hence, for all e ∈ E, e ≤ m,
i.e., m ∈ U(E). So U(F ) ⊂ U(E). In particular, the smallest element of U(E) is ≤ the
smallest element of U(F ), i.e., supE ≤ supF . �
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Limsup and Liminf

Let xn, n ≥ 1, be a sequence of real numbers: this may or may not converge. However,
even if it does not converge we may still define two useful limiting quantities.

Example Consider the sequence

xn = (−1)n
(
1− 1

n

)
.

The first few values are

0,
1

2
,−2

3
,
3

4
,−4

5
, . . . .

Clearly, this sequence does not converge but there is an obvious sense in which 1 is a
“limiting upper bound” and −1 is a “limiting lower bound”. We want to make this idea
precise.

But first another example.

Example Consider the sequence

xn = (−1)n
(
1 +

1

n

)
.

The first few values are

−2,
3

2
,−4

3
,
5

4
,−6

5
, . . . .

Again, it is clear that this sequence does not converge. This time 1 and −1 are not upper
and lower bounds but there is still a sense in which they represent greatest and least
limiting values.

Definition Given a sequence xn of real numbers, we say that

lim sup
n→+∞

xn = x

(with x ∈ R) if, given ϵ > 0,

(i) there exists N ∈ N such that

xn < x+ ϵ for all n ≥ N ;

and
(ii)

xn > x− ϵ for infinitely many values of n ≥ 1.
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We say that
lim sup
n→+∞

xn = +∞

if, given any M ≥ 1,

xn > M for infinitely many values of n ≥ 1.

We say that
lim sup
n→+∞

xn = −∞

if, limn→∞ xn = −∞, that is, given any M ≥ 1, there is N ∈ N
xn < −M for all n ≥ N.

Lemma 2.13. We have
lim sup
n→+∞

xn = lim
n→+∞

sup
k≥n

xk.

In particular, the lim sup of a sequence of real numbers always exists (though it may be
±∞).

Proof. Exercise. �
Definition Given a sequence xn of real numbers, we say that

lim inf
n→+∞

xn = x

(with x ∈ R) if given ϵ > 0,

(i) there exists N ≥ 1 such that

xn > x− ϵ for all n ≥ N ;

and
(ii)

xn < x+ ϵ for infinitely many values of n ≥ 1.

We say that
lim inf
n→+∞

xn = −∞

if, given any M ≥ 1,

xn < −M for infinitely many values of n ≥ 1.

We say that
lim inf
n→+∞

xn = ∞

if limn→∞ xn = ∞, that is, given any M ≥ 1, there is N ∈ N
xn > M for all n ≥ N.

Lemma 2.14. We have
lim inf
n→+∞

xn = lim
n→+∞

inf
k≥n

xk.

In particular, the lim inf of a sequence of real numbers always exists (though it may be
±∞).

Proof. Exercise. �
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