Some notation and definitions used in the course

 $(X, Y, A, B, \ldots$ are some sets)

$$\mathbb{N} = \{1, 2, 3, ...\} \\ \mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\} \\ \mathbb{R} \\ \mathbb{R}^+ = \{x \in \mathbb{R} : x \ge 0\} \\ \mathbb{R}^* = \mathbb{R} \cup \{+\infty, -\infty\} \\ \mathcal{P}(X) \\ l(I)$$

the set of positive natural numbers the set of integers the set of real numbers the set of non-negative real numbers the extended set of real numbers the set of all subsets of Xlength of interval $I \subseteq \mathbb{R}$

$A \subset B, A \subseteq B$	A is a subset of B (not necessarily strict)
$f(A)$ (for $f: X \to Y$ and $A \subseteq X$)	$\{f(x) \mid x \in A\}$
$X \setminus Y$	$\{x \mid x \in X \text{ and } x \notin Y\}$
Y^c	$X \setminus Y$ when X is clear from the context

For an interval $I \subseteq \mathbb{R}$ and $f: I \to \mathbb{R}$, f is *piecewise continuous* if there are only finitely many points at which f is discontinuous, and if left and right limits of f exist at each point of I (obviously, except one of them at each end points).

 σ -additivity of a function defined on a σ -algebra of subsets of \mathbb{R} (to $\mathbb{R}^+ \cup \{\infty\}$) is the same as its countable additivity.