10.6 Corollary (of the Compactness Theorem)

Let \(\Sigma \) be a set of \(L \)-sentences, and \(\phi \) any \(L \)-sentence. If \(\Sigma \models \phi \) then there exists a finite subset \(\Sigma_0 \subseteq \Sigma \) such that \(\Sigma_0 \models \phi \).

Proof: If \(\Sigma \models \phi \) then \(\Sigma \cup \{ \neg \phi \} \) has no model. By the (contrapositive of) the Compactness Theorem, there exists \(\Sigma_0 \subseteq \Sigma \) such that \(\Sigma_0 \cup \{ \neg \phi \} \) has no model. But then every model of \(\Sigma_0 \) is necessarily a model of \(\phi \), so \(\Sigma_0 \models \phi \).

11.1 Exercise

Evaluate \(\Theta(L; N) \) for \(L = L_0 \) when \(\sigma = <I, J, K, \rho, \mu> \) and \(I, J, K \) are finite.

Solution

For \(i \in I \), there are \(2^{N^{\rho(i)}} \) subsets of \(\{1, \ldots, N^3\}^{\rho(i)} \).

For \(j \in J \), there are \(N^{N^{\rho(j)}} \) functions from \(\{1, \ldots, N^3\}^{\rho(j)} \) to \(\{1, \ldots, N^3\} \).

For \(k \in K \), there are \(N \) elements of \(\{1, \ldots, N^3\} \).

Thus \(\Theta(L; N) = |\Theta(L; N)| = \prod_{i \in I} 2^{N^{\rho(i)}} \cdot \prod_{j \in J} N^{N^{\rho(j)}} \cdot N^{\mu_1} \),

where an empty product is defined to be 1.

11.4 Exercise

Prove that for any \(\phi_1, \ldots, \phi_n \in T^0(L) \), \((i_1, \ldots, i_n) \in T^0(L) \).

Solution

Let \(\varepsilon > 0 \). Then \(\varepsilon \rho_1 > 0 \), so there exists \(N_0 > 0 \)
such that $\forall n \geq N_0$, and for each $i = 1, \ldots, r$

$$|1 - p(\phi_i^c; N)| < \frac{\varepsilon}{r + 1} \tag{*}$$

But

$$\Theta(- (\bigwedge_{i=1}^r \phi_i^c); N) = \bigcup_{i=1}^r \Theta(- \phi_i^c; N),$$

so

$$\Theta(- (\bigwedge_{i=1}^r \phi_i^c); N) \leq \sum_{i=1}^r \Theta(- \phi_i^c; N)$$

$$= \sum_{i=1}^r \left(\Theta(\phi_i^c; N) - \Theta(\phi_i^c; N^1)\right)$$

\therefore

$$\theta(- (\bigwedge_{i=1}^r \phi_i^c); N) \leq \sum_{i=1}^r (1 - p(\phi_i^c; N)) < \frac{r \varepsilon}{r + 1} \ (by \ (*)).$$

\therefore

$$1 \geq p((- (\bigwedge_{i=1}^r \phi_i^c); N) = 1 - p(- (\bigwedge_{i=1}^r \phi_i^c); N) > 1 - \varepsilon \ \text{for} \ N \geq N_0.$$}

Thus

$$p((- (\bigwedge_{i=1}^r \phi_i^c); N) \to 1 \ \text{as} \ N \to \infty \ \text{and hence} \ (\bigwedge_{i=1}^r \phi_i^c) \in \mathbb{T}^a(L).$$

Easy exercise (p.51)

Γ_0 has no finite models.

Solution

Actually, the graph with 2 points and one edge (i.e., $\{1, 2, 3, 4, 5, 6\}$) satisfies Γ_0, so we should add K_3 to Γ_0.

Now suppose $\langle A; R \rangle \models \Gamma_0$ with $A = \{a_1, \ldots, a_N\}$ ($N \geq 3$).

If $\langle a_i, a_j \rangle \in R$ for all i, j with $i \neq j$, choose $w_1 = a_1, w_2 = a_2, v_1 = v_2 = a_3$.

Then for every $c \in A$, either $\langle a_1, c \rangle \in R$ or $\langle a_2, c \rangle \in R$, so Π_2 is false in $\langle A; R \rangle$ - contradiction.

So suppose, say, $\langle a_1, a_2 \rangle \in R$. Set $v_1 = a_2, v_2 = a_3, \ldots, v_n = a_{n+1}$ and w_1, \ldots, w_n all equal to a_1. Then there is no $c \in A$ such that $\langle c, a_j \rangle$ for $j = 1, \ldots, n+1$, since we cannot have $c = a_1$. But then $c = a_j$ for some $j = 2, \ldots, n+1$, and then $\langle c, a_j \rangle \in R$ (as R is irreflexive).

Hence $\langle A; R \rangle \not\models \Pi_2$ - contradiction.