14.5 Exercise

Let \(\Sigma \) be an \(L \)-theory and let \(\phi \in F_n(L) \) (for some \(n \geq 0 \)). Let \(c_1, \ldots, c_m \) be constant symbols which do not occur in any sentence in \(\Sigma \). Assume that \(\Sigma \models \phi(c_1, \ldots, c_m) \). Then \(\Sigma \models \forall v_1 \cdots \forall v_n \phi \).

Solution.

Suppose, for a contradiction, that there exists \(c \models \Sigma \) such that \(c \models \neg \forall v_1 \cdots \forall v_n \phi \). Then \(c \models \forall v_1 \cdots \forall v_n \neg \phi \), so for some \(a_1, \ldots, a_n \in A \), \(c \models \neg \phi[a_1, \ldots, a_n] \). Now change the interpretation of \(c_1, \ldots, c_m \) in \(c \) to \(a_1, \ldots, a_n \). Then we still have \(c \models \Sigma \), since \(c_1, \ldots, c_m \) do not occur in any sentence in \(\Sigma \), and also \(c \models \neg \phi[c_1, \ldots, c_m] \), where \(c' \) is the new structure. This contradicts the fact that \(\Sigma \models \phi(c_1, \ldots, c_m) \).

15.1.1 Exercise

Prove that if \(\phi_1, \phi_2 \) are both logically equivalent to existential sentences then so is the sentence \((\phi_1 \land \phi_2) \).

Solution

We may choose \(n \) sufficiently large so that \(\phi_1 \) is logically equivalent to

\[\exists v_1 \cdots \exists v_n \psi_1 \]

where \(\psi_1 \in F_n(L) \) and \(\psi \) is \(AF \) (for \(i = 1, 2 \)).

Thus \((\phi_1 \land \phi_2) \) is logically equivalent to

\[\exists v_1 \cdots \exists v_n \exists v_{n+1} \cdots \exists v_m (\psi_1 \land \psi_2') \]

where \(\psi_2' \) is the result of replacing each occurrence of \(v_j \) in \(\psi_2 \) by \(v_{n+j} \) (for \(j = 1, \ldots, n \)).
15.2.1 Exercise

Let \mathfrak{C}, \mathfrak{D} be \mathcal{L}-structures with $\mathfrak{C} \subseteq \mathfrak{D}$. Consider the set of $\mathcal{L}(\mathfrak{D})$-sentences defined by

$$\Sigma := \text{CDrag}(\mathfrak{C}) \cup \text{Diag}(\mathfrak{D})$$

where we regard $\mathcal{L}(\mathfrak{C})$ as a sub-language of $\mathcal{L}(\mathfrak{D})$ (i.e. we use the constant symbol c_a for each $a \in A$ in both CDrag(\mathfrak{C}) and Diag(\mathfrak{D})).

Now it is certainly true, as in the notes, that if $\mathfrak{E}' \models \Sigma$ and $\mathfrak{E} := \mathfrak{E}' \upharpoonright \mathfrak{I}$, then we may suppose that $\mathfrak{C} \subseteq \mathfrak{E} \subseteq \mathfrak{E}'$ and that $\mathfrak{C} \subseteq \mathfrak{I}$, which implies that

(*) for all existential $\phi \in \text{E}_n(\mathfrak{E})$ and $a_1, \ldots, a_n \in A$ (and all $n \geq 0$), if $\mathfrak{E} \models \phi[a_1, \ldots, a_n]$ then $\mathfrak{E} \models \phi[a_1, \ldots, a_n]$,

and (*) is false in general. However, this argument assumes that Σ does have a model and we have no reason, a priori, to believe this. In fact:

Claim: Assume that (*) holds. Then Σ has a model (and, as we have seen, conversely).

Proof of Claim

It is sufficient to show that Σ is finitely satisfiable. Assume not. Then there is a sentence $(\exists x) \phi(\bar{x})$ such that CDrag(\mathfrak{C}) $\cup \{ \phi(\bar{x}) \}$ has no model. (We should really take a finite set of such sentences, but we then take the conjunction of them, which is still in Diag(\mathfrak{D})).
Now we may write θ in the form

$$\psi(c_{a_1, \ldots, c_{a_m}}, c_{b_1, \ldots, c_{b_m}}) \in \text{Diag} (\beta),$$

where $\psi(v_{i_1}, v_{i_2}, v_{i_3}, \ldots, v_{i_m})$ is a CI formula of \mathcal{L}, $a_1, \ldots, a_m \in A$ and $b_1, \ldots, b_m \in B \setminus A$.

Thus

$$\text{COdiag} (\alpha) = \neg \psi (c_{a_1, \ldots, c_{a_m}, c_{b_1, \ldots, c_{b_m}}).$$

Now $c_{a_1, \ldots, c_{a_m}}$ do not occur in any sentence in $\text{COdiag} (\alpha)$, so by 14.5

$$\text{COdiag} (\alpha) \models \forall v_{i_1} \ldots \forall v_{i_m} \neg \psi (c_{a_1, \ldots, c_{a_m}, v_{i_1}, \ldots, v_{i_m})$$

$$\therefore \quad \alpha^+ \models \forall v_{i_1} \ldots \forall v_{i_m} \neg \psi (c_{a_1, \ldots, c_{a_m}, v_{i_1}, \ldots, v_{i_m})$$

$$\therefore \quad \alpha^+ \models \forall v_{i_1} \ldots \forall v_{i_m} \exists v_{i_1} \ldots \exists v_{i_m} \psi (c_{a_1, \ldots, c_{a_m}, v_{i_1}, \ldots, v_{i_m})$$

$$\therefore \quad \alpha^+ \models \forall v_{i_1} \ldots \forall v_{i_m} \exists v_{i_1} \ldots \exists v_{i_m} \psi (v_{i_1}, v_{i_2}, v_{i_3}, \ldots, v_{i_m}) [a_1, \ldots, a_m] \quad \text{(1)}$$

However, $\beta^+ \models \psi (c_{a_1, \ldots, c_{a_m}, c_{b_1, \ldots, c_{b_m}})$, so

$$\beta \models \psi (v_{i_1}, v_{i_2}, v_{i_3}, \ldots, v_{i_m}) [a_1, \ldots, a_m, b_1, \ldots, b_m] \quad \text{(2)}$$

$$\beta \models \exists v_{i_1} \ldots \exists v_{i_m} \psi (v_{i_1}, v_{i_2}, v_{i_3}, \ldots, v_{i_m}) [a_1, \ldots, a_m, b_1, \ldots, b_m]$$.

However, (1) and (2) contradict (5) (with ϕ being the formula $\exists v_{i_1} \ldots \exists v_{i_m} \psi (v_{i_1}, v_{i_2}, v_{i_3}, \ldots, v_{i_m})$).