Two and a half hours

THE UNIVERSITY OF MANCHESTER

MODEL THEORY

Date

Time

Answer all the questions. Each question is worth 20 marks. A further 20 marks are available from work during the semester, making a total of 100.

Electronic calculators may be used, provided that they cannot store text.

1. Let \mathcal{L} be the language containing just one binary relation symbol P.

(i) Give precise definitions, in the case of this particular language, for (a) the set of *terms* of \mathcal{L} , (b) the set of *atomic formulas* of \mathcal{L} , and (c) the set of *formulas* of \mathcal{L} .

(ii) Let \mathfrak{A} be an \mathcal{L} -structure with $dom(\mathfrak{A})=A$. What does it mean to say that a map $\pi: A \to A$ is an *automorphism* of \mathfrak{A} ? Prove that an automorphism preserves the truth of all formulas.

(iii) Now let \mathfrak{A}_0 , \mathfrak{A}_1 be the \mathcal{L} -structures $\langle \mathbb{Z}; \langle \rangle$, $\langle \mathbb{N}; \langle \rangle$ respectively, where \mathbb{Z} and \mathbb{N} denote the set of integers and the set of positive integers respectively, and \langle denotes the usual ordering. Prove that a subset S of \mathbb{Z} is definable in \mathfrak{A}_0 if and only if $S=\emptyset$ or $S=\mathbb{Z}$. Is the same true for the structure \mathfrak{A}_1 ? Give reasons for your answer.

[20 marks]

2. Let \mathcal{L} be a language and let \mathfrak{A} and \mathfrak{B} be \mathcal{L} -structures. Assume that \mathfrak{A} is a substructure of \mathfrak{B} . What does it mean to say that \mathfrak{A} is an *elementary substructure* of \mathfrak{B} (i.e. $\mathfrak{A} \leq \mathfrak{B}$)? State *Tarski's Lemma* giving necessary and sufficient conditions for \mathfrak{A} to be an elementary substructure of \mathfrak{B} .

Suppose now that \mathcal{L} consists of just one unary relation symbol P, and let \mathfrak{A} be the \mathcal{L} -structure with domain the set of positive integers and with P interpreted as the set of even positive integers. Prove that if \mathfrak{B} is any \mathcal{L} -structure with $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \preceq \mathfrak{B}$. [You may assume the result of part (ii) of question 1.]

[20 marks]

3. Let \mathcal{L} be a countable language and T a complete \mathcal{L} -theory without finite models.

(a) Explain what is meant by (i) an *n*-type (over T), and (ii) a principal *n*-type (over T).

(b) State the Omitting Types Theorem.

(c) State Ryll-Nardzewski's Theorem giving a necessary and sufficient condition for T to be \aleph_0 -categorical, and briefly describe the main ideas involved in its proof.

(d) Let \mathcal{G} be an infinite group whose complete theory is \aleph_0 -categorical. Prove that there exists a positive integer N such that for all $g \in dom(\mathcal{G})$ we have that $g^N = e$, where e denotes the identity element of \mathcal{G} .

[20 marks]

4. Let \mathcal{L} be a language. What is meant by a *universal* formula of \mathcal{L} . [You may take as given the notion of a quantifier-free formula of \mathcal{L}]

(a) Prove that if \mathfrak{A} and \mathfrak{B} are \mathcal{L} -structures with $\mathfrak{A} \subseteq \mathfrak{B}$, then for all universal formulas $\phi(v_1, \ldots, v_n)$ of \mathcal{L} and all $a_1, \ldots, a_n \in dom(\mathfrak{A})$, if $\mathfrak{B} \models \phi[a_1, \ldots, a_n]$ then $\mathfrak{A} \models \phi[a_1, \ldots, a_n]$. [You may assume that this is true in the case that ϕ is quantifier-free.]

(b) Let \mathfrak{A} be any \mathcal{L} -structure and suppose that $a \in \operatorname{dom}(\mathfrak{A})$. Prove that there exists a substructure $\mathfrak{A}_{\mathfrak{o}}$ of \mathfrak{A} such that for every $x \in \operatorname{dom}(\mathfrak{A}_{\mathfrak{o}})$, there exists a term $\tau(v_1)$ of \mathcal{L} such that $x = \tau^{\mathfrak{A}}[a]$.

(c) Deduce that if T is a set of universal sentences of \mathcal{L} and $\phi(v_1, v_2)$ is a quantifier-free formula of \mathcal{L} such that $T \models \forall v_1 \exists v_2 \phi(v_1, v_2)$, then there exist $N \geq 1$, and terms $\tau_1(v_1), \ldots, \tau_N(v_1)$ of \mathcal{L} such

P.T.O.

that $T \models \forall v_1(\phi(v_1, \tau_1(v_1)) \lor \phi(v_1, \tau_2(v_1)) \lor \ldots \lor \phi(v_1, \tau_1(v_N)))$. [Hint: Assume false and use the Compactness Theorem.]

[20 marks]