3. A little universal algebra.

Let us elucidate the notion of substructure.

Fix a similarity type \(S = \langle I, J, K, \rho, \mu \rangle \) as before.

Let \(a, b \in K_0 \) be as in 2.4, and assume \(A \subseteq B \).

Then, according to 2.4 with \(\pi = \text{id}_A \) we have that \(A \subseteq B \) iff

3.1 (1) for each \(i \in I \) and all \(a_1, \ldots, a_m \in A \) (where \(n = \rho(i) \))

\[a_1, \ldots, a_m \in R_i \iff \langle a_1, \ldots, a_m \rangle \in S_i. \]

i.e. \(R_i = A^n \cap S_i \) \((*)\)

(2) for each \(j \in J \) and all \(a_1, \ldots, a_m \in A \) (where \(m = \mu(j) \))

\[f_j(a_1, \ldots, a_m) = g_j(a_1, \ldots, a_m). \]

i.e. \(f_j \) is the restriction of \(g_j \) to \(A^n : f_j = g_j \mid A^n \) \((**)*\)

(\(\text{In particular, if } a_1, \ldots, a_m \in A, \text{ then } g_j(a_1, \ldots, a_m) \in A. \))

(3) for each \(k \in K, \) \(d_k = \pi_k \) \((**)(*) \) (\(\text{In particular, } \)

\(d_k \in A.) \)

3.2 Now suppose that \(B \in K_0 \) (as above) and that \(A \) is a subset of \(B \). We ask the question:

what conditions on \(A \) ensure that \(A \) is the domain of a substructure of \(B \)? By the comments above we must have that whenever \(a_1, \ldots, a_m \in A \) then

\[g_j(a_1, \ldots, a_m) \in A \] (for each \(j \in J \), where \(m = \mu(j) \)) \(- \) i.e. \(A \)

is closed under \(g_j \) \(- \) and for each \(k \in K, d_k \in A. \)

3.3 Theorem

With the notation above, \(A \) is the domain of a substructure of \(B \) if and only if \(A \) is closed under each \(g_j \) (for \(j \in J \)) and contains each \(d_k \) (for \(k \in K \).
Proof: The "only if" is proved in 3.2. For the "if" direction, suppose that A satisfies the stated condition. Then we simply define R_i by (x) (for each $i \in I$), f_j by (x) (for each $j \in J$) and g_k by (x) (for each $k \in K$), thus defining the substructure $\langle A, \{R_i : i \in I\}, \{f_j : j \in J\}, \{g_k : k \in K\} \rangle$ of \mathcal{L}.

3.4 Remark
(a) It follows from 3.3 that if σ is a purely relational type, i.e. $J = K = \emptyset$, then every subset of the domain of a σ-structure is the domain of a substructure of that structure.
(b) It of course follows from 3.1 (1), (2) and (3) that a subset of the domain of a σ-structure can be the domain of at most one substructure.

3.5 Theorem
Let $\mathcal{L} \in K_o$ (in above notation) and let S be any non-empty subset of B. Then there exists a smallest substructure $C_\sigma \subseteq \mathcal{L}$ with $S \subseteq \text{dom}(C_\sigma)$. (This means that if $C_\sigma' \subseteq \mathcal{L}$ and $S \subseteq \text{dom}(C_\sigma')$, then $C_\sigma \subseteq C_\sigma'$.) Further, C_σ is unique with this property.

Proof:
Let $S_0 := S \cup \{d_k : k \in K\}$ and, for each $n \geq 0$, let $S_{n+1} := S_n \cup \{g_j(a_1, \ldots, a_{\kappa(j)}) : j \in J, a_1, \ldots, a_{\kappa(j)} \in S_n\}$.

Let $S_\omega := \bigcup_{n=0}^\infty S_n$.

Clearly, $d_k \in S_\omega$ for each $k \in K$.
Also, $S_0 \subseteq S_1 \subseteq \cdots \subseteq S_n \subseteq S_{n+1} \subseteq \cdots \subseteq S_\omega$. (†).
Further, if \(j \in J \) then \(S_w \) is closed under \(g_j \). For if \(w = \mu(j) \) and \(a_1, \ldots, a_m \in S_w \), then by (\(\dagger \)), there exists \(n \) such that \(a_1, \ldots, a_m \in S_n \). So \(g_j(a_1, \ldots, a_m) \in S_{n+1} \) (by definition of \(S_{n+1} \)). Since \(S_{n+1} \subseteq S_w \) (by (\(\dagger \))) we have \(g_j(a_1, \ldots, a_m) \in S_w \), as required.

Thus, by 3.3, \(S_w \) is the domain of a substructure, \(\mathcal{C} \) say, of \(\mathcal{B} \). Since \(S \subseteq S_0 \subseteq S_w \) we have \(S \subseteq \text{dom}(\mathcal{C}) \).

Now suppose that \(\mathcal{C}' \) is any substructure of \(\mathcal{B} \) with \(S \subseteq \text{dom}(\mathcal{C}') \). By 3.1(3) we also have \(a_k \in \text{dom}(\mathcal{C}') \) (for each \(k \in K \)), so \(S_0 \subseteq \text{dom}(\mathcal{C}') \). We now prove by induction that for all \(n \), \(S_n \subseteq \text{dom}(\mathcal{C}') \).

So suppose (for the inductive step) that \(S_n \subseteq \text{dom}(\mathcal{C}') \). Since \(\text{dom}(\mathcal{C}') \) is closed under \(g_j \) (for each \(j \in J \)) by 3.1(2), it follows that \(g_j(a_1, \ldots, a_m) \in \text{dom}(\mathcal{C}') \) for each \(a_1, \ldots, a_m \in S_n \) (and each \(j \in J \)). Thus \(S_{n+1} \subseteq \text{dom}(\mathcal{C}') \) as required.

Thus \(\text{dom}(\mathcal{C}) = S_w = \bigcup_{n=0}^{\infty} S_n \subseteq \text{dom}(\mathcal{C}') \). The required result now follows from 3.6 below.

\[\square \]

3.6 Exercise
Let \(\mathcal{C}, \mathcal{C}', \mathcal{B} \in \mathcal{K} \). Suppose that \(\mathcal{C} \subseteq \mathcal{B} \), \(\mathcal{C}' \subseteq \mathcal{B} \) and \(\text{dom}(\mathcal{C}) \subseteq \text{dom}(\mathcal{C}') \). Then \(\mathcal{C} \subseteq \mathcal{C}' \).

3.7 Definition
A similarity type \(\sigma = \langle I, J, K, \prec, \mu, \nu \rangle \) is called countable if \(I, J, K \) are each countable sets.

3.9 Exercise (Downward Löwenheim-Skolem Theorem: weak form.)
By inspecting the proof of 3.5, prove that if
\(\sigma \) is countable and \(S \) is countable, then \(\text{dom}(\alpha) \) is countable.

3.9 Exercise

Let \(\sigma, \tau, \xi \in K_\sigma \) and suppose that \(\pi : \sigma \rightarrow \tau \) and \(\gamma : \xi \rightarrow \xi \). Prove that \(\gamma \circ \pi : \sigma \rightarrow \xi \).

3.10 Exercise

Prove that any embedding can be decomposed into an isomorphism and identity embedding. I.e. show that if \(\sigma, \tau \in K_\sigma \) and \(\pi : \sigma \rightarrow \tau \), then there exists \(\sigma^* \in K_\sigma \) such that \(\sigma^* \leq \tau \) and \(\pi : \sigma \cong \sigma^* \).