15. A preservation theorem.

Let L be any language. As promised earlier we are now going to prove a converse of 6.4.

15.1 Theorem

Let Θ be an L-sentence. Then the following are equivalent.

1. For all L-structures A, B, if $A \models \Theta$ and $A \subseteq B$, then $B \models \Theta$.
2. Θ is logically equivalent to an existential L-sentence.

Proof.

(2) \Rightarrow (1): Suppose $\models (\Theta \iff E)$ where E is an existential L-sentence. To prove (1), let A, B be L-structures with $A \subseteq B$ and suppose $A \models \Theta$. Then $A \models E$, hence $B \models E$ by 6.4. So $B \models \Theta$.

(1) \Rightarrow (2): Assume Θ has property (1). Define $\Sigma := \{ \phi : \phi$ is logically equivalent to an existential sentence and $A \models \phi \}$. We aim to show that $\Sigma \models \Theta$. For then, by 10.6, there exists $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \Theta$.

15.1.1 Exercise

Prove that if $\phi_1, \phi_2 \in \Sigma$, then $(\phi_1 \land \phi_2) \in \Sigma$.

Thus, if $\Sigma_0 = \{ \phi_1, \ldots, \phi_n \}$ then $(\bigwedge_{i=1}^n \phi_i) \in \Sigma$, and (since $\Sigma_0 \models \Theta$) we have $(\bigwedge_{i=1}^n \phi_i) \models \Theta$, and so
\(\vdash (\bigwedge_{i=1}^n \phi_i) \to \theta. \)

However, by definition of \(\Sigma \), \(\Sigma = (\bigwedge_{i=1}^n \phi_i) \), i.e.
\(\vdash \theta \to (\bigwedge_{i=1}^n \phi_i) \). Hence \(\theta \) is logically equivalent to \((\bigwedge_{i=1}^n \phi_i) \), which (since it is in \(\Sigma \)) is logically equivalent to an existential sentence of \(L \). So \(\theta \) is too.

To show that \(\Sigma \models \theta \), let \(\mathcal{L} \models \Sigma \). We must show that \(\mathcal{L} \models \theta \).

To this end we let \(T := \{ \neg \phi : \phi \) an existential sentence of \(L \) such that \(\mathcal{L} \models \neg \phi \} \).

Claim: \(T \cup \{ \theta \} \) is satisfiable.

Proof of claim: If false, \(T \models \neg \theta \) so by 10.6,
\(\{ \neg \phi_1, \ldots, \neg \phi_m \} \models \neg \theta \) for some \(\neg \phi_1, \ldots, \neg \phi_m \in T \).

Thus \((\bigwedge_{i=1}^n \neg \phi_i) \models \neg \theta \), so by taking the contrapositive we have \(\theta \models (\bigwedge_{i=1}^n \neg \phi_i) \) so
\(\theta \models (\bigwedge_{i=1}^n \phi_i) \). Now (examine) a disjunction of existential sentences of \(L \) is logically equivalent to an existential sentence of \(L \). Hence \((\bigwedge_{i=1}^n \phi_i) \in \Sigma \).

But \(\mathcal{L} \models \Sigma \), so \(\mathcal{L} \models (\bigwedge_{i=1}^n \phi_i) \). Therefore there is some \(i_0 \in \{1, \ldots, m \} \) such that \(\mathcal{L} \models \phi_{i_0} \). But \(\neg \phi_{i_0} \in T \) and no \(\mathcal{L} \models \neg \phi_{i_0} \) - contradiction. \(\square \) claim.
Thus there exists a model $G \models T \cup \{\Theta\}$.

Now if ϕ is any existential sentence of L such that $G \models \phi$, we must have $L \models \phi$, because if $L \models \neg \phi$, then $\neg \phi \in T$ (by definition of T) and hence $G \models \neg \phi$ — contradiction. So we may invoke 14.6: there exists an L-structure L' with $G \subseteq L'$ and an elementary embedding $\pi : L \to L'$.

We now use our hypothesis (1) to conclude that $L' \models \Theta$ (since $G \models \Theta$ and $G \subseteq L'$). But $L \equiv L'$, so $L \models \Theta$ was required.

15.2 Another application of the method of 14.6

Suppose that G, L are L-structures with $G \subseteq L$. Consider the set $\Sigma := C(\text{Diag}(G)) \cup \text{Diag}(L)$ of sentences of $L(L)$, where we use the same constant symbols C_a for $a \in A$ that are used in $L(L)$ (via the inclusion $A \subseteq B$), when formulating $C(\text{Diag}(G))$. Suppose that $L \models \Sigma$, and let $L := L^{' \uparrow L}$.

Then, after renaming elements of $C := \text{dom}(L)$ we may suppose that $G \subseteq L \subseteq L$ and that $G \subseteq L$ (by 14.3 and 14.4). But now consider an existential formula $\phi \in F_m(L)$. Suppose $a_1, \ldots, a_n \in A$ are such that $L \models \phi[a_1, \ldots, a_n]$. Then $L \models \phi[a_1, \ldots, a_n]$ (by 6.4). But since $G \subseteq L$, we have $G \models \phi[a_1, \ldots, a_n]$. So we have shown that existential formulas are preserved from L to G — which is certainly not the case in general!! (E.g. consider the additive group of even integers as a substructure of the additive group of integers — see 6.5.)

15.2.1 Exercise*

Find out what has gone wrong here, and formulate and prove the right theorem for the existence of L as above.