13.4 Definition

An n-type \(p \) is called principal if there is some \(\phi \in p \) such that \(\phi \) is principal for \(p \), i.e. for all \(\psi \in p \), \(T \models \forall \eta_1 \ldots \forall \eta_m (\phi \rightarrow \psi) \).

13.5 Exercises

1) There is no clash in terminology with our use of the word 'principal' in section 12. For if \(G \models T \) and \(a_1, \ldots, a_m \in A \) realises the principal n-type \(p \), then \(\phi \) is principal for \(a_1, \ldots, a_m \) (in \(G \)), where \(\phi \) is a principal formula of \(p \).

2) If \(\phi \) and \(\psi \) are both principal for the n-type \(p \), then \(\phi \) and \(\psi \) are \(\text{Em}(T) \)-equivalent.

13.6 Theorem

If \(p \) is a principal n-type (over \(T \)) then \(p \) is realised in every model of \(T \).

Proof.

Let \(G \models T \). Let \(\phi \) be principal for the n-type \(p \). Then since \(\phi \in p \) we have \(T \models \forall \eta_1 \ldots \forall \eta_m \phi \), so for some \(a_1, \ldots, a_m \in A \), \(G \models \phi[a_1, \ldots, a_m] \). Then \(a_1, \ldots, a_m \) realises \(p \) in \(G \) since if \(\psi \in p \), then \(T \models \forall \eta_1 \ldots \forall \eta_m (\phi \rightarrow \psi) \), so in particular \(G \models (\phi \rightarrow \psi)[a_1, \ldots, a_m] \). Since \(G \models \phi[a_1, \ldots, a_m] \) we have \(G \models \psi[a_1, \ldots, a_m] \), as required.

Much deeper is the

13.7 Omitting Types Theorem

Suppose \(\mathcal{L} \) is countable, \(T \) is a complete \(\mathcal{L} \)-theory, \(n \geq 1 \) and the \(p \) is an n-type (over \(T \)) which is not principal. Then there exists a countable model of \(T \).
that omits \(T \).

\textbf{Proof.}

(omitted. But note will be supplied. \(\square \))

We now complete the proof of the Ryll-Nardzewski Theorem (12.2) by showing the following. (See 13.3(4).)

13.8 Theorem

\[L \] is countable and suppose that \(T \) is a complete \(L \)-theory. Let \(n \geq 1 \) and assume that \(F_n(L)/E_n(T) \) is infinite. Then there exists a non-principal \(n \)-type (over \(T \)).

\textbf{Proof.}

Suppose, for a contradiction, that every \(n \)-type (over \(T \)) is principal.

\textbf{Case 1.} There are only finitely many \(n \)-types (over \(T \)).

Let them be \(\beta_1, \ldots, \beta_n \), and let \(\phi_1, \ldots, \phi_n \) be principal formulas for them (respectively). We shall show that \(|F_n(L)/E_n(T)| \leq 2^n \), contrary to our hypothesis.

To see this, let \(\psi \in F_n(L) \) and suppose \(T \models \exists \psi_1 \ldots \exists \psi_n \psi \). Let \(\varphi \in F_n(L) \) be the \(E_n(T) \)-equivalence class of \(\psi \). Then \(\varphi \) is a partial \(n \)-type (over \(T \)) and hence is contained in some \(n \)-type (over \(T \)) by 13.3(1). Say \(\varphi \in \beta_{i_1} \), where \(1 \leq j_i \leq N \). Then \(\psi \in \beta_{i_1} \), so \(T \models \exists \psi_1 \ldots \exists \psi_n (\phi_{j_1} \rightarrow \psi) \).

Now consider the formula \(\psi' := (\psi \lor \neg \phi_{j_1}) \).

If \(T \models \exists \psi_1 \ldots \exists \psi_n \psi' \), then by repeating the above argument, there exists \(j_2 \) such that \(T \models \forall \psi_1 \ldots \forall \psi_n (\phi_{j_2} \rightarrow \psi') \).
Clearly \(j_1 \neq j_2 \), for otherwise \(T \models \forall v_1 \ldots \forall v_n \left(\phi_{1_{j_1}} \rightarrow \psi_{1_{j_1}} \right) \) which contradicts the fact that \(T \models \exists v_1 \ldots \exists v_n \phi_{1_{j_1}} \).

Now consider the formula \(\psi_3'' : = \left(\psi_3 \land \exists v_1 \ldots \exists v_n \phi_{1_{j_2}} \right) \).

If \(T \models \exists v_1 \ldots \exists v_n \psi_3'' \), then we repeat the argument above to find \(j_3 \) (with \(1 \leq j_3 \leq n \)) such that
\[
T \models \forall v_1 \ldots \forall v_n \left(\phi_{1_{j_3}} \rightarrow \psi_3'' \right)
\]
and, once again, we must have \(j_2 \neq j_3 \), and \(j_3 \neq j_2 \). Continuing in this way we must eventually run out of \(j_3 \)'s. Say this happens after the \(k \)th stage. This means that we have found distinct \(j_1 \ldots j_k \) (all lying between \(1 \) and \(n \)) such that

13.8.1 \(T \models \forall v_1 \ldots \forall v_n \left(\phi_{1_{j_i}} \rightarrow \psi \right) \) for each \(i = 1, \ldots, k \), and

13.8.2 \(T \models \exists v_1 \ldots \exists v_n \left(\psi \land \forall v_1 \ldots \forall v_n \phi_{1_{j_1}} \ldots \phi_{1_{j_k}} \right) \).

Now 13.8.1 is equivalent to
\[
T \models \forall v_1 \ldots \forall v_n \left(\bigvee_{k=1}^{N} \phi_{1_{j_k}} \right) \rightarrow \psi,
\]
and 13.8.2 is equivalent to
\[
T \models \forall v_1 \ldots \forall v_n \left(\psi \rightarrow \left(\bigvee_{k=1}^{N} \phi_{1_{j_k}} \right) \right).
\]

So \(\psi \) is \(E_n(T) \)-equivalent to \(\bigvee_{i \in S} \phi_{1_{j_i}} \) for some non-empty subset \(S \) of \(\{1, \ldots, N\} \).

We assume that \(T \models \exists v_1 \ldots \exists v_n \psi \). If this is not the case, then \(\psi \) is \(E_n(T) \)-equivalent to, say, \(\neg v_1 \equiv v_1 \). So the number of \(E_n(T) \)-equivalence classes is at most the number of subsets of \(\{1, \ldots, N\} \). Thus \(|E_n(T)/E_n(T)| \leq 2^N \) as required.

Case 2. There are infinitely many \(n \)-types (over \(T \)).

Let \(\phi_1, \phi_2, \ldots, \phi_n \) be distinct \(n \)-types (over \(T \))
and (since we are assuming that they are all principal)
let \(\phi_1, \phi_2, \ldots, \phi_n \) be principal formulas for them.
Now if \(i \neq j \) then \(T \models \exists \forall i : \exists \forall n (\phi_i \land \phi_j) \) \(\iff (*) \).

For if \(i \neq j \), then \(\phi_i \neq \phi_j \) so there is some formula \(\psi \in \psi_i \) such that \(\psi \notin \psi_j \), so \(\forall \psi \in \psi_j \). But then
\[
T \models \forall \psi_i : \forall \psi_n (\phi_i \to \psi) \quad \text{and} \quad T \models \forall \psi_i : \forall \psi_n (\phi_j \to \neg \psi)
\]
which implies \(T \models \exists \forall i : \exists \forall n (\phi_i \land \phi_j) \), as required.

(This argument also shows that there are, indeed, at most countably many \(n \)-types (over \(T \)).)

Now let \(q := \{ (\bigwedge_{i=0}^{s} \phi_i) : s \leq 3, \text{finite} \} \).

Clearly \(q \) is closed under conjunction, and
for all \(s \leq 3 \), \(T \models \exists \forall i : \exists \forall n (\bigwedge_{i=0}^{s} \phi_i) \) because

otherwise we would have \(T \models \forall \forall i : \forall \forall n (\bigvee_{i=0}^{s} \phi_i) \). But

if we choose \(j_0 \in \{1, 2, \ldots, 3\} \setminus d \), then certainly
\[
T \models \exists \forall i : \exists \forall n (\phi_{j_0} \land (\bigvee_{i=0}^{s} \phi_i)) , \quad \text{so} \quad T \models \exists \forall i : \exists \forall n (\bigvee_{i=0}^{s} \phi_i)
\]

so \(T \models \bigvee_{i=0}^{s} \exists \forall i : \exists \forall n (\phi_{j_0} \land \phi_i) \), which clearly contradicts \((*) \).

This shows that \(q \) is a partial \(n \)-type (over \(T \)), and hence, by 13.3(i), \(q \models p \) for some \(n \)-type \(p \) (over \(T \)).

But \(p = p_{i_0} \) for some \(i_0 \), so \(\phi_{i_0} \in p_{i_0} \). But

\[
\neg \phi_{i_0} \in q \subseteq p_{i_0} , \quad \text{so} \quad (\phi_{i_0} \land \neg \phi_{i_0}) \in p_{i_0} - \text{contradiction}.
\]

So we have shown that there must be at least one non-principal \(n \)-type (over \(T \)).
13.9 Exercise

Let $T = Th(<\mathbb{Z}^*; +; 0, 1>)$. Prove that there are uncountably many 1-types (over T).

13.10 Exercise

Let T be ω-categorical and let $\mathfrak{A} \models T$. For $S \subseteq A$, denote by $\langle S \rangle$ the smallest substructure of \mathfrak{A} containing the set S in its domain (see 3.5).

Prove that if S is finite then so is $\langle S \rangle$.