12.6 Exercise

Let \(\mathcal{C} = \langle \mathbb{N}, <, +, \cdot, 0, 1 \rangle \). Use 12.2 to prove that there exists a structure \(\mathcal{D} \) such that
\(\mathcal{D} \cong \mathcal{C} \) but \(\mathcal{D} \not\cong \mathcal{C} \). (Such structures \(\mathcal{D} \) are called \underline{non-standard models of number theory}, and they were the subject of my Ph.D. thesis.)

13. Types.

To prove the \(\Rightarrow \) direction in 12.2 we require some more general theory. Here, \(L \) can be any language and \(T \) any complete \(L \)-theory.

13.1 Definition

Let \(n \geq 0 \). A subset \(p \subseteq F_n(L) \) is called an \underline{\(n \)-type (over \(T \))} if the following three conditions are satisfied:

1. If \(\phi \in p \), then \(T \models \forall x_1 \ldots \forall x_n \phi \);
2. If \(\phi \in p \) and \(\psi \in \neg p \) then \((\phi \lor \psi) \notin p \);
3. For any \(\phi \in F_n(L) \), either \(\phi \in p \) or \(\neg \phi \in p \) (but not both by (2) and (1)).

If \(p \) just satisfies (1) and (2) we call \(p \) a partial \(\underline{n \text{-}type (over } T) \).

Notation: If \(\phi \in F_n(L) \) and \(\xi_1, \ldots, \xi_n \) are closed terms of \(L \), we write \(\phi(\xi_1, \ldots, \xi_n) \) for the sentence obtained by replacing each free occurrence of \(\xi_i \) in \(\phi \) by \(\xi_i \) (for each \(i = 1, \ldots, n \)).

Notice that if \(p \) is any partial \(n \)-type (over \(T \)) and \(\phi_1, \ldots, \phi_n \in p \) then \((\bigwedge_{i=1}^n \phi_i) \in p \) (by repeated
use of 13.1(2)), and hence $T = \exists \psi_1 \ldots \exists \psi_n (\bigwedge \phi_i)$.

13.2 Theorem

If p is a partial n-type (over T), then there exists $C \models T$ and $a_1, \ldots, a_n \in A$ such that for all $\phi \in p$, $C \models \phi[a_1, \ldots, a_n]$. Further, if L is countable, then C may be taken to be countable.

Proof.

Let c_1, \ldots, c_m be new constant symbols and consider the set

$T \cup \{ \phi(c_1, \ldots, c_m) : \phi \in p \}$.

This is finitely satisfiable since if $\phi_1, \ldots, \phi_k \in p$ then by the above remark, any L-structure $C \models T$ satisfis $C \models \exists \psi_1 \ldots \exists \psi_n (\bigwedge \phi_i)$. So for some $a_1, a_2, \ldots, a_m \in A$ we have

$C \models (\bigwedge \phi_i)[a_1, \ldots, a_m]$

which easily implies

$\langle C, a_1, \ldots, a_m \rangle \models (\bigwedge \phi_i(c_1, \ldots, c_m))$.

Thus, by the compactness theorem there is some $L' \models T$ and $b_1, \ldots, b_m \in B$ such that for all $\phi \in p$, $\langle L', b_1, \ldots, b_m \rangle \models \phi[c_1, \ldots, c_m]$, so for all $\phi \in p$,

$L' \models T$ and $L' \models \phi[b_1, \ldots, b_m]$, as required.

Now if L is countable we just use the downward Löwenheim-Skolem Theorem to find $L' \leq L$ with $b_1, \ldots, b_m \in B'$ and B' countable. Then $L' \models T$ and $L' \models \phi[b_1, \ldots, b_m]$ for all $\phi \in p$.

□
13.3 Remarks and definitions

(1) For any \(\mathcal{A} \models T \) and \(a_1, \ldots, a_n \in \mathcal{A} \), the subset
\[\{ \phi \in \mathcal{F}_n(T) : \mathcal{A} \models \phi[a_1, \ldots, a_n] \} \]
\[\text{is clearly an \(n \)-type (over \(T \)).} \]
Thus, one consequence of 13.2 is that any partial \(n \)-type (over \(T \)) may be extended to (i.e., is contained in) some \(n \)-type (over \(T \)).

(2) We say that an \(n \)-type (over \(T \)), \(\vdash \), is realized in a model \(\mathcal{A} \models T \), if there is some \(a_1, \ldots, a_n \in \mathcal{A} \) such that for all \(\phi \in \vdash \), \(\mathcal{A} \models \phi[a_1, \ldots, a_n] \).

(3) Suppose \(\mathcal{A}, \mathcal{B} \models T \) and \(\pi : \mathcal{A} \cong \mathcal{B} \). If \(\langle a_1, \ldots, a_n \rangle \in \mathcal{A}^n \) realizes the \(n \)-type (over \(T \)) \(p \) in \(\mathcal{A} \), then, by 6.3, \(\langle \pi(a_1), \ldots, \pi(a_n) \rangle \) realizes \(p \) in \(\mathcal{B} \).

Hence, isomorphic models of \(T \) realize exactly the same \(n \)-types (over \(T \)), for all \(n \).

(4) Assuming \(L \) is countable and \(n \geq 1 \) is such that \(\mathcal{F}_n(L) \) is infinite, we shall show
\[\mathcal{E}_n(T) \]
that there is some \(n \)-type (over \(T \)), \(\vdash \), and some countable \(\mathcal{A} \models T \) such that \(\mathcal{A} \) omits \(\vdash \). Since, by 13.2, there is some countable \(\mathcal{B} \models T \) that realizes \(\vdash \), it follows from (3) that \(\mathcal{A} \cong \mathcal{B} \), and hence that \(T \) is not \(\omega \)-categorical.

We now discuss where not to look for such a type \(\vdash \).