Now suppose \(\lim \sup_{n \to \infty} x_n = \lim \inf_{n \to \infty} x_n = l \in \mathbb{R} \), say.

Let \(\varepsilon > 0 \) be given. Then we may choose \(N \) so that for all \(n \geq N \),

\[
| \sup_{k \geq n} x_k - l | < \varepsilon \quad \text{and} \quad | \inf_{k \geq n} x_k - l | < \varepsilon .
\]

In particular,

\[
\sup_{k \geq N} x_k < l + \varepsilon \quad \text{and} \quad \inf_{k \geq N} x_k > l - \varepsilon .
\]

So for all \(k \geq N \), \(x_k < l + \varepsilon \) and \(x_k > l - \varepsilon \).

So \(\forall k \geq N \), \(| x_k - l | < \varepsilon \), so \(\lim_{k \to \infty} x_k = l \).

If \(\lim \sup_{n \to \infty} x_n = \lim \inf_{n \to \infty} x_n = \infty \), then given any \(M \), there exists \(N \) such that \(\forall n \geq N \), \(\inf_{k \geq n} x_k > M \). In particular, \(\forall k \geq N \), \(x_k > M \). This shows \(x_k \to \infty \) as \(k \to \infty \), as required. The case of \(-\infty \) is left as an exercise. \(\square \)

Proof of Lemma 3.13 (ii)

Suppose that \(\forall x \in [0,1] \), \(\lim_{n \to \infty} f_n(x) = f(x) \) and each \(f_n \) is measurable.

By 3.13', \(\lim \sup_{n \to \infty} f_n(x) = f(x) \) (\(\forall x \in [0,1] \)).

I.e. \(\lim_{n \to \infty} (\sup_{k \geq n} f_k(x)) = f(x) \).

For each \(n \geq 1 \), let \(g_n = \sup_{k \geq n} f_k \). Then each \(g_n \) is measurable by 3.13 (i). Also, for each \(x \in [0,1] \),

\[(g_n(x))_{n \geq 1} \]

is a decreasing sequence.

Hence \(f = \lim_{n \to \infty} g_n = \inf_{n \geq 1} g_n \). By 3.13 (i) again,

\(\inf_{n \geq 1} g_n \) is measurable, i.e. \(f \) is measurable. \(\square \)
Proposition 3.14

Let \(f, g : [0,1] \to \mathbb{R}^+ \) be measurable and let \(c \in \mathbb{R} \). Then \(cf, f+g, fg \) (if defined) are measurable.

Proof.

First note that the constant function zero is measurable (by 3.12). So to show \(cf \) is measurable, assume \(c \neq 0 \).

Then

\[
\{ x \in [0,1] : cf(x) \leq a \} = \bigcup_{\epsilon > 0} \{ x \in [0,1] : f(x) \leq \frac{a}{c} + \frac{\epsilon}{|c|} \}.
\]

So \(cf \) is measurable since \(f \) is.

Suppose \(f, g \) are both measurable.

Note that \(f(x) + g(x) > a \) \(\iff \exists r \in \mathbb{R} \) s.t. \(f(x) > r \) and \(g(x) > a - r \).

Hence \((f+g)^{-1}(\mathbb{R}, \infty) = \{ x \in [0,1] : f(x) + g(x) > a \} \)

\[
= \bigcup_{r \in \mathbb{R}} (f^{-1}(r, \infty) \cap g^{-1}(a-r, \infty)) \in M([0,1]).
\]

(We won't keep repeating the fact that sets like this one lie in \(M([0,1]) \) because \(M([0,1]) \) is a \(\sigma \)-algebra.)

Finally, for \(f \cdot g \) we first reconsider \(f^2 \). We have

\[
\{ x \in [0,1] : f^2(x) \leq a \} = \begin{cases} \emptyset & \text{if } a < 0 \\ \{ x \in [0,1] : f(x) = \sqrt{a} \} & \text{if } a = 0 \\ \{ x \in [0,1] : -\sqrt{a} \leq f(x) \leq \sqrt{a} \} & \text{if } a > 0.
\end{cases}
\]

All three sets are in \(M([0,1]) \) (easy exercise), so \(f^2 \) is measurable. We now use the trick

\[
f \cdot g = \frac{1}{2} ((f+g)^2 - f^2 - g^2)
\]

to deduce from the above that \(f \cdot g \) is measurable. \(\square \)
Integrating non-negative measurable functions

(To keep the flow of the development of the Lebesgue integral running smoothly, I shall omit all proofs that are non-examinable. They are relegated to an appendix in the printed notes; I shall return to them if time permits.)

Theorem 3.15

Let \(f : [0,1] \to \mathbb{R}^+ \) be a non-negative (i.e., \(\forall x \in [0,1], f(x) \geq 0 \)) measurable function. Then there exists an increasing sequence of non-negative simple functions \(f_n \) (\(n \geq 1 \)), such that \(f_n \) converges pointwise to \(f \) as \(n \to \infty \).

Proof. Non-examinable.

Proposition 3.16

Let \(f_n, g_n, n \geq 1 \) be two increasing sequences of non-negative simple functions which converge pointwise to the same measurable function on \([0,1]\), as \(n \to \infty \). Then

\[
\lim_{n \to \infty} \int f_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu.
\]

Proof. Non-examinable.

Definition

Let \(f : [0,1] \to \mathbb{R}^+ \) be a non-negative measurable function. Then we define

\[
\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu
\]

where \(f_n \) is some increasing sequence of non-negative simple functions, converging pointwise to \(f \) (as given by 3.15).
(Notice that the $\int f \, d\mu$'s have already been redefined.
(just before 3.8).)

By 3.16, $\int f \, d\mu$ is well-defined.

Lemma 3.17

Let $f, g : [0, 1] \to \mathbb{R}^+$ be non-negative measurable functions and $c \in \mathbb{R}^+$, then

1. $\int (f + g) \, d\mu = \int f \, d\mu + \int g \, d\mu$;
2. $\int cf \, d\mu = c \int f \, d\mu$;
3. if $f \geq g$, then $\int f \, d\mu \geq \int g \, d\mu$.

Proof.

Examine. (Hint for (iii): Consider $f - g$.)

Integrating general measurable functions.

We must now consider measurable functions that can take both positive and negative values.

Let $f : [0, 1] \to \mathbb{R}^*$ be any function.

Define $f^+ : [0, 1] \to \mathbb{R}^+$ and $f^- : [0, 1] \to \mathbb{R}^+$ by

$$f^+(x) = \max\{0, f(x)\} \quad \text{and} \quad f^-(x) = \max\{0, -f(x)\}.$$

Then f^+ and f^- are both non-negative functions, and so we have

$$f = f^+ - f^- \quad \text{and} \quad |f| = f^+ + f^-.$$

It also follows from 3.13(i) and 3.14 that:

Lemma 3.18

If $f : [0, 1] \to \mathbb{R}^*$ is measurable, then f^+, f^- and $|f|$ are all measurable.