Real Algebraic and Analytic Geometry |

Definable versions of theorems by Kirszbraun and Helly.

e-mail: ,

Submission: 2009, June 5.

*Abstract:
Kirszbraun's Theorem states that every Lipschitz map $S\to\mathbb R^n$,
where $S\subseteq \mathbb R^m$, has an extension to a Lipschitz map $\mathbb R^m \to \mathbb R^n$
with the same Lipschitz constant. Its proof relies on Helly's Theorem: every family of compact subsets of
$\mathbb R^n$, having the property that each of its subfamilies consisting of at most $n+1$ sets share a common point,
has a non-empty intersection. We prove versions of these theorems valid for definable maps and sets in arbitrary
definably complete expansions of ordered fields.*

Mathematics Subject Classification (2000): 03C64, 52A35, 32B20.

Keywords and Phrases: Kirszbraun's Theorem, Helly's Theorem, Lipschitz maps, definably complete structures.

**Full text**, 34p.:
dvi 188k,
ps.gz 262k,
pdf 344k.

Server Home Page