Real Algebraic and Analytic Geometry

Preprint Server

Previous   Next
161. D. D'Acunto, K. Kurdyka:
Effective Łojasiewicz gradient inequality for polynomials.

e-mail: ,

Submission: 2005, April 28.

Let f:Rn -->R be a polynomial function of degree d with f(0)=0 and  f(0)=0. Łojasiewicz's gradient inequality states
there exist C>0 and 0<ρ<1 such that |∇ f(x)| ≥ C|f|ρ in a neighbourhood of the origin.  We prove that the smallest of
such exponents $\rho$ is not greater than  1- R(n,d)-1 with  R(n,d)=d(3d-3)n-1.

Mathematics Subject Classification (2000): 32Bxx, 34Cxx, 32Sxx, 14P10.

Keywords and Phrases: polynomials, Łojasiewicz inequality, Łojasiewicz exponent,  valley lines.

Full text, 9p.: dvi 44k, ps.gz 155k, pdf 185k.

Server Home Page