Real Algebraic and Analytic Geometry

Preprint Server

RAAG_NETWORK.gif
Previous   Next
91. Digen Zhang:
Prüfer hulls of commutative rings.

e-mail:

Submission: 2004, February 13.

Abstract:
Let $A$ be a commutative ring with $1$ and $P(A)$ denote the Prüfer hull of $A$. If $P(A)$ is a von Neumann regular ring then $P(A)=A_S$ with $S:=A\cap P(A)^*$ the intersection of $A$ and the group $P(A)^*$ of all units of $P(A)$. As an application, we show that (1) $A$ is a semihereditary ring if and only if $P(A)$ is a von Neumann regular ring; (2) $A$ is a FPF ring if and only if $P(A)$ is a self-injective ring.

Full text, 6p.: dvi 20k, ps.gz 82k, pdf 103k.


Server Home Page