Real Algebraic and Analytic Geometry

Preprint Server

RAAG_NETWORK.gif
Previous   Next
36. Johannes Huisman, Frédéric Mangolte:
Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety.

e-mail: ,
homepages: http://fraise.univ-brest.fr/~huisman/, http://www.lama.univ-savoie.fr/sitelama/Membres/pages_web/MANGOLTE/

Submission: 2003, March 13.

Abstract:
We show that any orientable Seifert 3-manifold is diffeomorphic to a connected component of the set of real points of a uniruled real algebraic variety, and prove a conjecture of János Kollár.

Mathematics Subject Classification (2000): 14P25.

Keywords and Phrases: uniruled algebraic variety, Seifert manifold, Klein surface, equivariant line bundle.

Full text, 9p.: dvi 51k, ps.gz 50k, pdf 198k.


Server Home Page