Answer FOUR of the FIVE questions. If more than four questions are attempted, then credit will be given for the best four answers.

Show all your work and justify your answers.
1. [20 marks]

Let G be a finite group.

(a) Define a G-space, a G-subspace and the character of a G-space.

(b) Prove that if A is a finite abelian group then every irreducible A-space has dimension 1.

(c) Let V be a G-space and let $g \in G$. Show that there is a basis for V such that the matrix for g is diagonal with roots of unity on the diagonal. (You may assume Maschke’s theorem, that every G-space is a direct sum of irreducible G-spaces.)

Let χ be a character of G.

(d) Show that $|\chi(g)| \leq \chi(1)$ for any $g \in G$.

(e) If g is conjugate to g^{-1}, show that $\chi(g) \in \mathbb{R}$.

(f) If g is of order 2, show that $\chi(g) \in \mathbb{Z}$ and that $\chi(g) \equiv \chi(1) \pmod{2}$.

(g) If g is of order 3 and g is conjugate to g^{-1}, show that $\chi(g) \in \mathbb{Z}$ and that $\chi(g) \equiv \chi(1) \pmod{3}$.

2. [20 marks]

(a) For a finite group G, define a homomorphism of G-spaces.

(b) State and prove Schur’s Lemma.

Let V be a G-space, ρ_v an associated matrix representation with character χ_v, and f a class function on G. Define a matrix P_f by

$$P_f = \frac{\dim V}{|G|} \sum_{g \in G} f(g) \rho_v(g).$$

(c) Show that multiplication by P_f is a homomorphism from the G-space V to itself.

(d) If V is irreducible, deduce that $P_f = \lambda \text{Id}_V$ for some $\lambda \in \mathbb{C}$. Show that $\lambda = (\chi_v, f)$.

(e) Still assuming V to be irreducible, let W be another irreducible G-space. Quoting without proof any results from the course that you need, show that $P_{\chi_W} = \begin{cases} \text{Id}_V & \text{if } V \cong W \\ 0 & \text{otherwise.} \end{cases}$

(f) If V is not irreducible, write it as a sum of irreducibles: $V \cong \bigoplus_i V_i$. Show that P_{χ_W} is projection onto the sum of the V_i with $V_i \cong W$.

2 of 4 P.T.O.
3. [20 marks]

(a) Define a class function on a finite group G and the inner product $(\phi, \mu)_G$ of two class functions ϕ and μ.

(b) Prove that characters of G-spaces are class functions.

(c) If H is a subgroup of G and θ is a class function on H, write down the formula for the induced class function $\text{Ind}_H^G \theta$ on G.

(d) State and prove the Frobenius Reciprocity Theorem for class functions.

Let H be a subgroup of G and let V be an irreducible G-space. Let U be an irreducible H-subspace of $\text{Res}_H^G V$.

(e) Use Frobenius reciprocity to show that V is isomorphic to a G-subspace of $\text{Ind}_H^G U$ and deduce that $\dim V \leq |G : H| \dim U$.

(f) Deduce that $\dim V \leq |G : H|$ when H is abelian.

(g) Returning to the case when H is not necessarily abelian, let W be an irreducible H-space and X an irreducible G-subspace of $\text{Ind}_H^G W$. Show that W is isomorphic to an H-subspace of $\text{Res}_H^G X$.

4. [20 marks]

(a) Let X be a finite G-set and $\mathbb{C}X$ the corresponding permutation G-space. State and prove a formula for $\chi_{\mathbb{C}X}(g)$ in terms of the action of g on X.

(b) Write down representatives for the conjugacy classes of S_4, the symmetric group on 4 objects, and calculate the size of each class. How many irreducible representations does S_4 have?

(c) Find the two 1-dimensional characters of S_4.

From now on be careful to explain all the properties of characters that you use.

(d) Calculate the character of the natural permutation representation of S_4 and use it to produce a 3-dimensional irreducible character of S_4.

(e) Use standard properties of characters to complete the character table of S_4.

3 of 4
5. [20 marks]

Let \(G \) be a finite group and let \(\chi_1, \ldots, \chi_n \) be the irreducible characters of \(G \).

(a) Write down two formulas that express row orthogonality and column orthogonality for the character table of \(G \).

(b) Use one of these to show that \(\sum_{i=1}^{n} \chi_i(1)^2 = |G| \).

(c) Suppose that \(g \in G \) is such that \(g \neq 1 \). Show that if all the values \(\chi_i(g) \) are real, then there is some \(i \) such that \(\chi_i(g) < 0 \).

(d) Prove that, for any character \(\chi \) and any \(g \in G \), \(\chi(g^{-1}) = \overline{\chi(g)} \). You may quote any other results from the course without proof.

(e) If \(g \in G \) is not conjugate to \(g^{-1} \), show that \(\sum_{i=1}^{n} \chi_i(g)^2 = 0 \).

(f) Prove that if \(g \) is not conjugate to \(g^{-1} \), then for some irreducible character, \(\chi_i \), the value \(\chi_i(g) \) is not a real number.