3 hours

THE UNIVERSITY OF MANCHESTER

HYPERBOLIC GEOMETRY

13 January 2014
2.00 - 5.00

Answer ALL FOUR questions in Section A (40 marks in total).
Answer TWO of the THREE questions in Section B (60 marks in total).
Answer ALL THREE questions in Section C (50 marks in total).
If more than TWO questions from Section B are attempted then credit will be given for the TWO best answers.

Electronic calculators are permitted provided that they cannot store text.

Notation: Throughout, \mathbb{H} denotes the upper half-plane, $\partial \mathbb{H}$ denotes the boundary of \mathbb{H}, \mathbb{D} denotes the Poincaré disc, and $\partial \mathbb{D}$ denotes the boundary of \mathbb{D}.
SECTION A

Answer **ALL** four questions

A1.

(i) Let A be either a straight line or a circle in \mathbb{C}. Prove that points on A satisfy an equation of the form

$$\alpha z\bar{z} + \beta z + \bar{\beta} \bar{z} + \gamma = 0 \quad (*)$$

where $\alpha, \gamma \in \mathbb{R}$ and $\beta \in \mathbb{C}$.

[6 marks]

(ii) Geodesics in \mathbb{H} correspond to vertical straight lines in \mathbb{H} and semi-circles with real centres in \mathbb{H}. These have equations of the form $(*)$ with $\beta \in \mathbb{R}$ (you do not need to prove this).

Consider the points $-5 + 12i$ and $12 + 5i$ in \mathbb{H}. Determine an equation of the form $(*)$ (i.e. find values of $\alpha, \beta, \gamma \in \mathbb{R}$) that describes the geodesic through these two points.

[4 marks]

A2.

(i) Let $\sigma : [a, b] \rightarrow \mathbb{H}$ be a path in \mathbb{H}. Define the hyperbolic length, $\text{length}_\mathbb{H}(\sigma)$, of σ.

[2 marks]

(ii) Show that the hyperbolic length of the vertical straight line from $1 + 3i$ to $1 + 12i$ is $\log 4$.

[4 marks]

A3.

(i) Let $S = \{a_1, \ldots, a_k\}$ be a finite set of symbols. Briefly explain how to construct the free group on k generators F_k.

(Your answer should include: a description of the elements of F_k, a description of the group operation, a description of the group identity, and a brief explanation of how to find the inverse of an element in F_k. You do not need to prove that the group operation is well-defined.)

[4 marks]

(ii) Consider F_2, the free group on 2 generators a, b. Show that there are 4 words of length 1 and 12 words of length 2 in F_2.

How many words of length n are there in F_2?

[6 marks]
A4.

(i) Consider the regular hyperbolic decagon in Figure 1 below with each internal angle equal to $\pi/9$ and with the sides paired as illustrated (you may assume that such a hyperbolic decagon exists).

Show that there are two elliptic cycles and determine their orders. By using Poincaré's Theorem, show that the side pairing transformations generate a co-compact Fuchsian group Γ. (You do not need to give a presentation of Γ in terms of generators and relations.)

[10 marks]

(ii) Write down the signature $\text{sig}(\Gamma)$ of Γ. Sketch a picture of the quotient space \mathbb{H}/Γ.

[4 marks]

Figure 1: See Question A4. Each internal angle is $\pi/9$ and the sides are paired as indicated.
B5. Let Γ be a Fuchsian group acting on either \mathbb{H} or \mathbb{D}. Recall that an open set $F \subset \mathbb{H}$ (or \mathbb{D}) is a fundamental domain if

- $\bigcup_{\gamma \in \Gamma} \gamma(\text{cl}(F)) = \mathbb{H}$ (or \mathbb{D})
- $\gamma_1(F) \cap \gamma_2(F) = \emptyset \text{ if } \gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2$.

Consider the following statements. In each case, state whether the statement is true or false and justify your answer by giving either a proof or a counterexample. You may use any of the results from the course, provided that you state them clearly.

(i) The set

$$\{z \in \mathbb{H} \mid |z| \geq 1\}$$

is a fundamental domain for some Fuchsian group. [2 marks]

(ii) There exists a Fuchsian group with

$$\{z \in \mathbb{H} \mid -2 < \text{Re}(z) < 2\}$$

as a fundamental domain. [4 marks]

(iii) Let Γ be a Fuchsian group. Then there exists a unique fundamental domain for Γ. [4 marks]

(iv) The perpendicular bisector of the arc of geodesic $[z_1, z_2]$ between $z_1, z_2 \in \mathbb{H}$ is given by

$$\{z \in \mathbb{H} \mid d_\mathbb{H}(z, z_1) = d_\mathbb{H}(z, z_2)\}.$$ [6 marks]

(v) The modular group $\text{PSL}(2, \mathbb{Z})$ has a fundamental domain with hyperbolic area $\pi/8$. [4 marks]

(vi) The modular group $\text{PSL}(2, \mathbb{Z})$ is generated by $z \mapsto z + 1, z \mapsto -1/z$. [4 marks]

(vii) Let D be any convex hyperbolic polygon. Then D is a Dirichlet polygon for some Fuchsian group. [6 marks]
B6.

(i) Let $\gamma(z) = (az + b)/(cz + d)$ where $a, b, c, d \in \mathbb{R}$ and $ad - bc > 0$ be a Möbius transformation of \mathbb{H}. Prove the following two identities:

$$\gamma'(z) = \frac{ad - bc}{(cz + d)^2}, \quad \text{Im}(\gamma(z)) = \frac{ad - bc}{|cz + d|^2} \text{Im}(z).$$

Conclude that $\text{Im}(\gamma(z)) = |\gamma'(z)| \text{Im}(z)$.

[6 marks]

(ii) Let $z, w \in \mathbb{H}$ and let $\gamma \in \text{Möb}(\mathbb{H})$. By using the fact that $d_{\mathbb{H}}(ia, ib) = \log b/a$ when $0 < a < b$, the fact that

$$|\gamma(z) - \gamma(w)| = |z - w| \sqrt{|\gamma'(z)| |\gamma'(w)|}$$

(you do not need to prove this yourself), and the results in (i) above, prove that

$$\cosh d_{\mathbb{H}}(z, w) = 1 + \frac{|z - w|^2}{2 \text{Im}(z) \text{Im}(w)},$$

stating clearly any standard results from the course that you use. (You may assume that if $0 < a < b$ then $d_{\mathbb{H}}(ia, ib) = \log b/a$.)

[10 marks]

(iii) Let Δ be a hyperbolic right-angled triangle with side lengths a, b, c where c is the length of the side opposite the right-angle.

State and prove the hyperbolic version of Pythagoras' Theorem. (If you reduce the problem to a particular case then you should briefly explain why this reduction is valid.)

[8 marks]

(iv) Consider a hyperbolic quadrilateral where two opposing angles are right-angles (you may assume that such quadrilaterals exist) and with side lengths as indicated in Figure 2.

![Figure 2](https://via.placeholder.com/150)

Figure 2: See Question B6(iv).

Prove that $\cosh a_1 \cosh b_1 = \cosh a_2 \cosh b_2$.

What is the Euclidean analogue of this identity?

[6 marks]
B7.

(i) Let \(\gamma(z) = (az + b)/(cz + d), \) \(a, b, c, d \in \mathbb{R}, \) \(ad - bc > 0 \) be a Möbius transformation of \(\mathbb{H}. \)

In terms of fixed points, what does it mean to say that \(\gamma \) is parabolic?

Suppose that \(c \neq 0. \) Prove that \(\gamma \) is parabolic if and only if \((d-a)^2 + 4bc = 0. \) [6 marks]

For the remainder of this question, let \(k, \ell \in \mathbb{R} \) and define

\[
\gamma_1(z) = \frac{3z + (k - 3)}{2z + (k - 2)}, \quad \gamma_2(z) = \frac{3z - (2\ell + 6)}{2z - (\ell + 4)}.
\]

(ii) For which values of \(k, \ell \) are \(\gamma_1, \gamma_2 \) Möbius transformations of \(\mathbb{H}? \)

For which values of \(k, \ell \) are \(\gamma_1, \gamma_2 \) parabolic? [8 marks]

(iii) In the case when \(\gamma_1, \gamma_2 \) are Möbius transformations of \(\mathbb{H} \) show, by considering end-points, that \(\gamma_1 \) maps \(s_1 \) to \(s_2 \) and \(\gamma_2 \) maps \(s_4 \) to \(s_3 \), as illustrated in Figure 3.

![Figure 3: See Question B7(iii).](image-url)

(iv) What does it mean for a parabolic cycle to satisfy the parabolic cycle condition?

Determine the values of \(k, \ell \) for which \(\gamma_1, \gamma_2 \) generate a Fuchsian group \(\Gamma. \) Give a presentation of \(\Gamma \) in terms of generators and relations. [12 marks]
SECTION C

Answer ALL three questions

C8. Let X be a metric space and let Γ be a group of homeomorphisms that acts on X.

(i) Let $x \in X$. Define the stabiliser $\text{Stab}_\Gamma(x)$ of x in Γ. [2 marks]

(ii) Let $g : X \to X$ be a homeomorphism. Show that $\text{Stab}_\Gamma(g(x)) = g \text{Stab}_\Gamma(x)g^{-1}$. [4 marks]

Now consider the case when $X = \mathbb{H}$ and $x = i \in \mathbb{H}$.

(iii) Show that

$$\text{Stab}_{\text{Möb}(\mathbb{H})}(i) = \left\{ z \mapsto \frac{(\cos \theta)z + \sin \theta}{(-\sin \theta)z + \cos \theta} \mid \theta \in [0, \pi) \right\}.$$

Calculate $\text{Stab}_{\text{PSL}(2,\mathbb{Z})}(i)$. [8 marks]

(iv) Find a Möbius transformation $g \in \text{Möb}(\mathbb{H})$ such that $g(i) = 1 + i$. Hence, using (ii), show that

$$\text{Stab}_{\text{Möb}(\mathbb{H})}(1+i) = \left\{ z \mapsto \frac{(\cos \theta - \sin \theta)z + 2\sin \theta}{(-\sin \theta)z + (\sin \theta + \cos \theta)} \mid \theta \in [0, \pi) \right\}.$$

and calculate $\text{Stab}_{\text{PSL}(2,\mathbb{Z})}(1+i)$. [8 marks]

C9. Let X be a proper metric space and let Γ be a group of homeomorphisms that acts on X.

(i) What does it mean to say that Γ acts properly discontinuously on X? [2 marks]

(ii) Suppose that Γ acts properly discontinuously on X. Let $x \in X$. Prove that the orbit $\Gamma(x) \subset X$ is a discrete set. Prove that the stabiliser $\text{Stab}_\Gamma(x)$ of x is finite. [8 marks]

Let $X = \partial \mathbb{H}$, the boundary of the upper half-plane.

(iii) Let $\Gamma = \text{PSL}(2,\mathbb{Z})$ be the modular group. Then Γ acts on $\partial \mathbb{H}$ by homeomorphisms. Show that Γ does not act properly discontinuously on $\partial \mathbb{H}$. [4 marks]

(iv) Let $\Gamma = \{\gamma_n \mid \gamma_n(x) = x + n\}$ be the group of integer translations. Then Γ acts on $\partial \mathbb{H}$ by homeomorphisms. Does Γ act properly discontinuously on $\partial \mathbb{H}$? [4 marks]

7 of 8

P.T.O.
C10.

(i) Let Γ be a Fuchsian group acting on \mathbb{H} and let $z \in \mathbb{H}$. What is meant by a limit point of $\Gamma(z)$? [2 marks]

(ii) Suppose that $\gamma \in \Gamma$ is hyperbolic. Prove that the fixed points of γ are in $\Lambda(\Gamma)$. (You may use any standard results from the course provided that you state them clearly.) [6 marks]

(iii) Determine the limit set of the Fuchsian group Γ acting on \mathbb{H} where

$$\Gamma = \left\{ \gamma_n \mid \gamma_n(z) = \frac{2^n z}{(1 - 2^n)z + 1} \right\}.$$ [4 marks]