Three Hours

THE UNIVERSITY OF MANCHESTER

PREDICATE LOGIC

23 January 2014
9.45 – 12.45

Answer ALL FIVE questions in Section A (56 marks in all).
Answer TWO of the THREE questions in Section B (24 marks in total).
If more than TWO questions from Section B are attempted,
then credit will be given for the FIRST TWO answers.

A list of axioms and rules of proof is appended to this examination paper

Electronic calculators are not permitted

A1. Let the language L have a binary relation symbol R and a binary function symbol f. Which of the following are terms of L? You should justify your answers.

(i) $f(x_1, f(x_1, x_1))$
(ii) $f((f(x_1, x_2), x_1))$

Which of the following are formulae of L? You should briefly justify your answers.

(iii) $\forall w_1 (R(x_1, x_1) \lor R(x_1, x_1))$
(iv) $\forall x_1 (R(x_1, x_1) \lor \neg R(x_1, x_1))$

Let M be the structure for L with $|M| = \{2, 3, 4, \ldots\}$, $f_M(n, m) = n \times m$, and $R_M = \{ \langle n, m \rangle \in |M|^2 \mid n < m \}$.

Which of the following sentences of L are true in M?

(v) $\forall w_1 \exists w_2 R(w_2, w_1)$,
(vi) $\forall w_1 \forall w_2 (\exists w_3 R(f(w_1, w_3), f(w_2, w_3)) \rightarrow R(w_1, w_2))$,
(vii) $\exists w_1 \forall w_2 (R(w_2, w_1) \rightarrow R(f(w_2, w_2), w_1))$.

Find formulae $\theta_1(x_1, x_2)$, $\theta_2(x_1)$, $\theta_3(x_1, x_2)$, $\theta_4(x_1)$ of L such that for $n \in |M|,

$M \models \theta_1(n, m) \iff n = m$,
$M \models \theta_2(n) \iff n = 2$,
$M \models \theta_3(n, m) \iff n^2 \leq m$,
$M \models \theta_4(n) \iff n = 3$.

Let K be the structure for L with $|K| = \mathbb{N} = \{1, 2, 3, \ldots\}$, $f^K(n, m) = n \times m$, $R^K = \{ \langle n, m \rangle \in |K|^2 \mid n < m \}$.

Find a sentence ϕ of L such that $K \models \phi$ and $M \not\models \phi$.

A2. Write down a sentence in Prenex Normal Form logically equivalent to

$(\exists w_1 P(w_1) \rightarrow \neg (\forall w_1 P(w_1) \land \exists w_1 Q(w_1)))$

where P, Q are unary relation symbols.

A3. Let L be a relational language and for $\theta \in FL$ let θ^* be the expression resulting from removing every occurrence of \neg in θ. Outline a proof that for $\theta \in FL$, $\theta^* \in FL$.
A4. Define what is meant by a formal proof. Give a formal proof of
\[\exists w_1 (\theta(w_1) \rightarrow \phi) \vdash \forall w_1 \theta(w_1) \rightarrow \phi \]
where \(w_1 \) does not occur in \(\phi \).

A5. State the Completeness Theorem. Using this theorem or otherwise show that
(a) \(\forall w_1 P(g(w_1)) \not\vdash \forall w_1 P(w_1) \)
(b) \(\forall w_1 (P(w_1) \rightarrow \neg P(g(w_1))) \vdash \exists w_1 \neg P(w_1) \)
where \(P \) is a unary relation symbol and \(g \) a unary function symbol.
Does \(P(x_1) \rightarrow \neg P(g(x_1)), P(x_2) \vdash \neg P(g(x_2)) \).
Justify your answer.
B6. (a) Show that
\[EqL, \forall w_1 \forall w_2 (\theta(w_1, w_2) \rightarrow w_1 = w_2) \models \forall w_1, w_2 (\theta(w_1, w_2) \rightarrow \theta(w_2, w_1)). \]

(b) Give a formal proof of
\[EqL, \phi(x_1), \neg \phi(x_2) \vdash \neg x_1 = x_2. \]

[12 marks]

B7. Suppose that the language \(L \) has constant symbols \(c, d \) and for \(\theta \) a formula of \(L \) let \(\theta \) be the formula of \(L \) resulting from replacing each occurrence of \(c \) in \(\theta \) by \(d \). \textit{Outline} a proof that if \(\models \theta \) then \(\models \theta \).

Does the result still hold if only some occurrences of \(c \) are replaced by \(d \)? You should justify your answer.

[12 marks]

B8. Describe an infinite set \(\Gamma \) of sentences of the language \(L \) with just equality such that for \(M \) a normal structure for \(L \),
\[M \models \Gamma \iff |M| \text{ is infinite.} \]

Suppose that \(\Gamma' \subseteq SL \) is another set of sentences with this same property. Show that for every \(\theta \in \Gamma' \) there is a finite subset \(\Delta \) of \(\Gamma \) such that
\[EqL, \Delta \vdash \theta. \]

Hence show that any such \(\Gamma' \) cannot be finite.

[12 marks]
The Rules of Proof and Axiom for the Predicate Calculus

And In (AND)
\[
\Gamma | \theta, \Delta | \phi \\
\Gamma \cup \Delta | \theta \land \phi
\]

And Out (AO)
\[
\Gamma | \theta \land \phi \\
\Gamma | \theta \\
\Gamma | \phi
\]

Or In (ORR)
\[
\Gamma | \theta \\
\Gamma | \theta \lor \phi \\
\Gamma | \phi \\
\Gamma | \theta
\]

Disjunction (DIS)
\[
\Gamma, \theta | \psi, \Delta, \phi | \psi \\
\Gamma \cup \Delta | \theta \lor \phi
\]

Implies In (IMR)
\[
\Gamma, \theta | \phi \\
\Gamma | \theta \rightarrow \phi
\]

Modus Ponens (MP)
\[
\Gamma | \theta, \Delta | \theta \rightarrow \phi \\
\Gamma \cup \Delta | \phi
\]

Not In (NIN)
\[
\Gamma, \theta | \phi, \Delta, \theta | \neg \phi \\
\Gamma \cup \Delta | \neg \theta
\]

Not Not Out (NNO)
\[
\Gamma | \neg \neg \theta \\
\Gamma | \theta
\]

Monotonicity (MON)
\[
\Gamma | \theta \\
\Gamma \cup \Delta | \theta
\]

All In (\(\forall I\))
\[
\Gamma | \theta \\
\Gamma \forall w_j \theta(w_j/x_i)
\]
where \(x_i\) does not occur in any formula in \(\Gamma\) and \(w_j\) does not occur in \(\theta\)

All Out (\(\forall O\))
\[
\Gamma | \forall w_j \theta(w_j, \bar{x}) \\
\Gamma | \theta(t(\bar{x}), \bar{x})
\]
for \(t(\bar{x}) \in TL\)

Exists In (\(\exists I\))
\[
\Gamma | \theta \\
\Gamma | \exists w_j \theta'
\]
where \(\theta'\) is the result of replacing any number of occurrences of the term \(t(\bar{x})\) in \(\theta\) by \(w_j\) and \(w_j\) does not occur in \(\theta\).

Exists Out (\(\exists O\))
\[
\Gamma, \phi | \theta \\
\Gamma, \exists w_j \phi(w_j/x_i) | \theta
\]
where \(x_i\) does not occur in \(\theta\) nor any formula in \(\Gamma\) and \(w_j\) does not occur in \(\phi\).

REF
\[
\Gamma | \theta \text{ whenever } \theta \in \Gamma.
\]
The Equality Axioms, EqL

Eq1 \(\forall w_1 w_1 = w_1 \)

Eq2 \(\forall w_1, w_2 (w_1 = w_2 \rightarrow w_2 = w_1) \)

Eq3 \(\forall w_1, w_2, w_3 ((w_1 = w_2 \land w_2 = w_3) \rightarrow w_1 = w_3) \)

Eq4 \(\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{r+i} \right) \rightarrow (R(w_1, w_2, \ldots, w_r) \leftrightarrow R(w_{r+1}, w_{r+2}, \ldots, w_{2r})) \right) \)

for \(R \) an \(r \)-ary relation symbol of \(L \).

Eq5 \(\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{n+i} \right) \rightarrow f(w_1, w_2, \ldots, w_r) = f(w_{r+1}, w_{r+2}, \ldots, w_{2r}) \right) \)

for \(f \) an \(r \)-ary function symbol of \(L \).

Eq6 \(\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{r+i} \right) \rightarrow t(w_1, w_2, \ldots, w_r) = t(w_{r+1}, w_{r+2}, \ldots, w_{2r}) \right) \)

for \(t(x_1, x_2, \ldots, x_r) \in TL \).

Eq7 \(\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{r+i} \right) \rightarrow (\theta(w_1, w_2, \ldots, w_r) \leftrightarrow \theta(w_{r+1}, w_{r+2}, \ldots, w_{2r})) \right) \)

for \(\theta(x_1, x_2, \ldots, x_r) \in FL \).