Two and a half hours

THE UNIVERSITY OF MANCHESTER

SETS, NUMBERS AND FUNCTIONS B

23 January 2014
9.45 - 12.15

Answer **ALL SIX** questions in Section A (40 marks in total). Answer **FOUR** of the SIX questions in Section B (60 marks in total). If more than **FOUR** questions from Section B are attempted, then credit will be given for the best **FOUR** answers.

Electronic calculators may be used, provided that they cannot store text.
SECTION A

Answer **ALL** of the SIX questions

A1.
For statements \(p \) and \(q \), determine the truth tables of the following:

(a) \(p \lor q \);

(b) \((p \land \neg q) \Rightarrow ((\neg q) \lor (\neg p)) \).

[6 marks]

A2. Let \(f : A \rightarrow B \) be a function.

(a) Define \(\text{Im}(f) \), the image of \(f \).

(b) Define what it means for \(f \) to be 1-1.

(c) Define what it means for \(f \) to be onto.

(d) Define what it means for \(f \) to be a permutation.

[7 marks]

A3. Let \(R \) be a relation on a set \(A \).

(a) Define what it means for \(R \) to be symmetric.

(b) Define what it means for \(R \) to be reflexive.

(c) Define what it means for \(R \) to be transitive.

(d) Give an example of a set \(A \) and a relation \(R \) on \(A \) which is transitive, but not symmetric or reflexive.

[8 marks]

A4. Use induction to show that 5 divides \(6^n + 4 \) for all \(n \in \mathbb{N} \)

[7 marks]
A5. Consider the permutation

\[f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 8 & 7 & 2 & 6 & 5 & 9 & 1 & 3 \end{pmatrix}. \]

(a) Write down \(f \) in disjoint cycle notation.
(b) Write down \(f^{-1} \), using any notation you wish.
(c) Let \(a = (19258)(3674) \) and \(b = (154)(296)(38) \). Write down \(a \circ b \) as a product of disjoint cycles.

[6 marks]

A6. Let \(* \) be a binary operation on a non-empty set \(S \). Explain what it means for

(a) \(* \) to be associative;
(b) \(* \) to be commutative;
(c) \(e \) to be an identity element of \(S \) for \(* \).

[6 marks]
SECTION B

Answer **FOUR** of the SIX questions.

B7.

(a) Define a binary operation $*$ on \mathbb{Z} by

$$a * b = ab + 1$$

where $a, b \in \mathbb{Z}$.

(i) Determine whether or not $*$ is commutative, justifying your answer.

(ii) Show that $*$ is not associative.

(iii) Determine whether or not \mathbb{Z} possesses an identity element with respect to $*$, justifying your answer.

[5 marks]

(b) Let G be a non-empty set and $*$ be a binary operation on G. Define what it means for $(G, *)$ to be a group.

[4 marks]

(c) Suppose $(G, *)$ is a group.

(i) Prove that the identity element of $(G, *)$ is unique.

(ii) Let e be the identity element of $(G, *)$. If $g, h \in G$, then prove that $(gh)^{-1} = h^{-1}g^{-1}$.

[6 marks]

B8.

(a) Using the Euclidean algorithm, find the greatest common divisor of 102 and 174, and express this greatest common divisor as an integer linear combination of 102 and 174.

[6 marks]

(b) Find all integers $x \in \{0, 1, \ldots, 173\}$ which are solutions of

$$102x \equiv 12 \mod 174.$$

[6 marks]

(c) Consider the group (\mathbb{Z}_{28}, \circ). Find the inverse of the element 12.

[3 marks]

4 of 6
B9.

(a) Let A be a non-empty set and R an equivalence relation on A.

(i) For $a \in A$, define the equivalence class R_a of a.
(ii) If $a, b \in A$ and aRb, prove that $R_a = R_b$.
(iii) If $a, b \in A$ and $a \not R b$, prove that $R_a \cap R_b = \emptyset$.

[9 marks]

(b) Let A and B be sets and let $f : A \rightarrow B$ be a function. Define an equivalence relation R on A
by
\[a_1Ra_2 \iff f(a_1) = f(a_2), \]
where $a_1, a_2 \in A$.

(i) Give a necessary and sufficient condition on the equivalence classes for f to be 1-1.

[2 marks]

(ii) Suppose now that $A = B = \mathbb{Z}_{12}$ and define $f : A \rightarrow A$ by $f(x) = 4 \odot x$, i.e., multiplication
modulo 12. Write down the equivalence classes of R in this case.

[4 marks]

B10.

(a) Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions. Prove that if $g \circ f$ is 1-1, then f is 1-1.

[4 marks]

(b) Define $f : \mathbb{R} \rightarrow \mathbb{R}$ by
\[f(x) = \begin{cases} \frac{x+3}{x-2} & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases} \]
Show that f is both 1-1 and onto.

[8 marks]

(c) Determine whether the following statement is true or false, and give a proof of either the
statement or its negation as appropriate:
\[\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \forall z \in \mathbb{Z}, z \leq x + y + 1. \]

[3 marks]
B11.

(a) Let A and B be sets.

(i) Define the Cartesian product $A \times B$.

(ii) Let $A = \{(n, 2n) : n \in \mathbb{Z}\}$ and $B = \{(n, n + 1) : n \in \mathbb{Z}\}$ (both subsets of $\mathbb{Z} \times \mathbb{Z}$). Write down $A \setminus B$. [3 marks]

(b) Prove that every natural number greater than 1 has a prime divisor. [7 marks]

(c) Show that the equation $x^2 + 8y = 3$ has no integer solutions x and y. [5 marks]

B12.

(a) Let A be a set and let $n \in \mathbb{N}$. Define what it means for A to have cardinality n. [2 marks]

(b) Using the cardinality of appropriate sets, define the binomial coefficient \(\binom{n}{r} \), where $n, r \in \mathbb{N} \cup \{0\}$. [3 marks]

(c) Using the above definition of \(\binom{n}{r} \), prove that if $n, r \in \mathbb{N} \cup \{0\}$ with $n \geq r$, then
\[
\binom{n}{r} = \binom{n}{n - r}.
\] [4 marks]

(d) State (without proof) the binomial theorem. [3 marks]

(e) Prove that
\[
\sum_{r=0}^{n} 2^r \binom{n}{r} = 3^n.
\] [3 marks]

END OF EXAMINATION PAPER.

6 of 6