The course has run smoothly, and the students participation, interaction, and evaluation results indicate that it has been well appreciated and found interesting. The only area of improvement asked for is to have a more complete set of printed notes. This was difficult to do this year, except partially, given that it is the first time I have taught the course, and that 85% of the material was constructed from scratch, which is time intensive. More printed notes will be provided next year. It is my belief however that the material taught in the lectures was complete and carefully structured, and that the students who attended regularly had no need for anything else than their lecture notes, along with the provided example sheets and detailed solutions. Specific comments on feedback follow.

Positive points identified from students feedback:
“Clear lecturing”, “very interactive”, going through “many examples even during lectures (not just during tutorials)”, the teaching of “a lot of interesting stuff which are not examinable in the lecture”, “the style” of teaching, the fact that the course is “interesting and enjoyable”, and that the “unit is helpful. It showed us a few real life stability problems can be solved using mathematics.”

Suggested improvement:
- The main suggested improvement is related to making lecture notes, or summary thereof, available online. This was only partially achieved this year, despite my initial intention, given the substantial amount of time which was required to construct a new taught course. A more complete set of printed material will be made available next year.

Answers to comments related to other points follow;
- “I really enjoyed this course, but I would appreciate it if Dr. Daou would start the lectures on time and finish them on time, as I had other lectures after the stability lectures, which I was always late to because Dr. Daou did not finish on time.”

I remember having exceeded the time by 5 minutes or so a couple of times, and also that I have apologised for that, as I believe that it is indeed
important. I will make sure that this does not happen in future.

- “Before I enrolled into this unit, the webpage did not mention anything about coursework. Also we had to accept a lot of equations without knowing how to deduce them, which is quite frustrated for me. And we went through Bifurcation Theory very fast even some of us did not do the course on dynamic system”.

This seems to be an administrative glitch, as information about the coursework should have been available (as it is now); I have however given information about the coursework in week 1. As for the equations, only the Navier-Stokes equation and transport equations were given without derivation, as most students have seen them before; I pointed out however, that those who have not seen these equations should simply accept them or read more about them in introductory books. All other equations were derived in a systematic way. As for bifurcation theory, I intentionally covered this material concisely but rather adequately, given that a lot of the material is familiar for most of students; I will make sure that a bit more time is dedicated to this background material next year.

- “half of the solution sheets are missing after we finished all the material, this is unacceptable”.

All the solution sheets were provided by week 12. The reason that the last three solution sheets were provided in week 12 and not before, is that we have agreed (after discussion in class) to displace the tutorials to week 12 (and dedicate all hours in weeks 10 and 11 to lectures). And as usual, solutions are provided after and not before tutorials.