I am grateful to all students who responded to the online Unit Evaluation Questionnaire. I value your comments which will be used to further improve this course unit.

General. Although this course in abstract algebra is seen as challenging by a considerable number of students, I am glad to see the high feedback scores indicating that the students were happy with the course in general, and especially with the quality of teaching.

Technology in classroom. The lectures were given by writing on the screen of a tablet, which was wirelessly projected onto the right-hand large screen in the lecture theatre. After some experimenting in the beginning of the semester, I found a way to make the left-hand projector show the content of the previous screen. The total writing area available was hence comparable to all the blackboards in the theatre. I am glad to see that the students appreciated this method, returning only positive comments in the feedback. The students pointed out that it was good that I faced the audience when lecturing and could freely walk around the lecture theatre. It should be pointed out that the success of this way of teaching depends on the classroom provision (i.e., two projectors), which is outside of the lecturer's, and even the School's, control.

Podcasts. There was positive feedback about the podcasts of the lectures being available. Podcasts work well when lectures are given on a tablet. Although the University does not record tutorials (as opposed to lectures), I was able to record most of them myself. I intend to continue offering podcasts subject to technology being available.

Pace, level of difficulty. Judging by the feedback comments, students were generally happy with the pace of the lectures. There were comments to the effect that the course contains a lot of proofs, and that some of the questions on the example sheets were really hard. This is true – but of course proofs are *sine qua non* of algebra. On the other hand, I do not include theorems and proofs unless they serve one of the main mathematical objectives of the course, are applicable to interesting examples, or are illuminating in some way. In other words, I do not think that the course contains unnecessary proofs; but I am always open to constructive feedback on this.

Also, solutions to all the example sheet questions were provided in due course. Thus, even if a question was hard, at least the model solution could be instructive.

Some students asked for more `real-life' / less abstract examples, whereas some students wanted the course to be more abstract. To me, this suggests that the course offered a fair balance between theory and examples/computations/applications.

Coursework and the Online Test. The coursework consisted of a take-home problem sheet, set midway through the semester and worth 10% of the final mark, and the Online Test on Blackboard which was set late in the semester. Students were able to take the online test more than once (with new questions each time), and the mark for the test was based on the best attempt. Both the take-home coursework and the online test, and the overall structure of coursework, attracted positive feedback, which suggests that it makes sense to continue with this setup.
The final exam. Students can access full model solutions to each question in the 2015 exam paper, with my feedback of how the question was done in the exam. This is available from the relevant section of the School's website, and I usually post solutions/feedback to past exams to my own course webpage. It was my intention that the 2015 paper should be fair and offer a combination of some routine and some more challenging material. The marks achieved by students were broadly in line with my expectations, and I do not think that the results need any post-factum adjustment or scaling.