A Very Rough Guide for PhD Students in Mathematics

Mark Kambites & Charles Walkden, 7th August 2014

School of Mathematics, University of Manchester

This guide is intended to help you understand what you can expect, and what is expected of you, as a PhD student in mathematics at Manchester. It represents our personal views, so it does not have any official standing and is not intended as a substitute for the various official policies and guides produced by the School, Faculty and University. Also, your own supervisor may disagree with parts of it, in which case his/her view takes precedence. The guide will probably evolve over time, so please let us know if you have any suggestions for improvement.

Supervisors and Their Roles

The School will have allocated you a supervisor, at least one co-supervisor and an advisor. The supervisor is usually your main point of contact, and will normally be your main guide throughout your PhD. Your co-supervisor(s) may play any role from equal to that of your supervisor, through supervising a part of your research in which they have more expertise, to just providing cover when your supervisor is absent. The advisor will probably not be an expert in your field, and is there mainly to provide pastoral support.

Your supervisors have certain responsibilities towards you but, as a research student, you are ultimately responsible for your own work. Broadly speaking, it is the job of your supervisor(s) to:

- help you plan your own programme of study and research;
- suggest directions of research they feel are likely to be interesting and profitable;
- give you advice based on their experience as researchers; and
- provide you with feedback, so that you have a clear idea of how you are doing, and what if anything you need to do better.

It is not the job of your supervisor(s) to:

- know all the answers and be right all the time;
- ensure that you work hard enough;
- ensure that you get a PhD at the end of three years; or
- proofread your work and correct your English.

Of course, you should talk to your supervisor if you are worried about any aspect of your studies, including your self-motivation or your language skills. Supervisors want their students to succeed, and are often willing to give advice beyond their formal areas of responsibility (or suggest other avenues of support), but you should remember that the primary responsibility here is your own.

The core of your programme will be regular meetings with your supervisor. Some supervisors operate an “open door” policy for their research students, but others may prefer to see students by appointment. The exact arrangements for meetings should be agreed between you, and they may be more or less frequent at different stages of your PhD. Your co-supervisor(s) may attend
some or all of these meetings, or you may have separate meetings with them. Attendance at
meetings with supervisors is absolutely essential (and for international students it may also be a
condition of your visa). Sometimes your supervisor may be away for extended periods, in which
case you should agree beforehand what will happen (e.g. regular meetings with a co-supervisor
and/or keeping in touch with your supervisor by email).

Working Hours

There are no set working hours, but it is essential that you **treat your research as a full-
time job from the very start**. This is especially true if you are lucky enough to have
breezed through your undergraduate studies without much effort! If you are to complete your
PhD, you must make sure that outside commitments and activities don’t impact upon the time
you have available for research.

Some students work in the School and maintain approximately normal 9–5 hours; others
prefer to work at home and have more flexible hours. There are advantages and disadvantages
to both, and you should adopt whatever work pattern suits you the best. You will be spending
most of your time working independently, and it is important not to get into the habit of not
working!

The University’s policy is that normally PhD students are eligible for at most eight weeks
of holiday per year at times to be agreed with your supervisor. If you intend being away for
more than a week, then you should get your supervisor’s approval and submit a ‘holiday form’
to the School’s postgraduate office. You are also entitled to maternity or paternity leave and
should discuss this with your supervisor (note that you must take two weeks maternity leave
after your baby’s birth). You can also get time off if you are called for jury service. Your
funding body (and for international students, the terms of your visa) may impose additional
restrictions.

Writing Up as a Continuous Process

In our view, writing your thesis from scratch in the third year should be avoided at all costs.
If you try this, it will take far longer than you would ever have thought possible, and you will
be astonished at how steps which were “clear” in your scribbled notes become less so when you
try to fill in the details. In the worst case, you may discover at the last minute a key flaw in
early work, which invalidates much of what you have done in later years!

To avoid this, you should get into the habit of writing up your results **in full detail**, ideally using \LaTeX (see below), **as soon as you get them**. To save you wasting time by
repeating yourself, you should keep records not just of “positive” results (such as proofs) but
also of “negative” discoveries (such as counterexamples or references to places in the literature
where problems are already solved), even if you think these are too elementary to include in
your thesis. Similarly, when you are learning about a topic, try to write expository passages
explaining what you have learnt in your own words. Ideally, producing your thesis should then
involve selecting and concatenating some pre-existing \LaTeX files, editing a little for structure,
and slotting in some introductory and linking passages. Writing as you go along also improves
your writing skills, helps to organise your thoughts and should make the yearly reports (see
below) a doddle.

Where possible, you should aim to publish your major results as journal articles; these
may be in your name only or may be co-authored with your supervisor(s), and perhaps other
researchers as well, if they have had significant input. Publishing as early as possible is essential
if you are hoping for an academic career (see below). Publication also provides a great deal of
satisfaction, establishes the originality of your work (in case another researcher duplicates your
results) and may lead to useful feedback from the academic community.

Events and Courses

You should attend as many relevant events as possible, both within the School and outside. The School has a range of regular events: at the time of writing these include research seminars (talks by researchers about their own research) in algebra, applied mathematics, dynamical systems, probability and statistics, geometry, inverse problems and imaging, logic, topology, numerical analysis and scientific computing. There are often informal graduate lecture courses or reading courses in each semester. There are also more informal seminar series, including the ‘Pure Postgraduate Seminar’ (a seminar by and for research students) and the ‘Informal Applied Seminar’, as well as the School Colloquia (talks by distinguished invited speakers aimed at a general mathematical audience). Attendance at seminars directly related to your research area should be considered compulsory. You should also consider going to research seminars in other areas (within Mathematics and even in other schools such as Computer Science if appropriate).

Normally, over the first two years of your studies, you will have to attend 100 hours of taught material (a minimum of 60 hours of which has to be in your first year). The School belongs to the MAGIC network, through which a number of different universities run joint graduate courses in pure and applied mathematics by video-conferencing (each course is worth either 10 or 20 hours). Students in probability and statistics normally take APTS courses; these are week-long residential courses and each week contains 2 courses worth 33 hours in total. MSc-level courses can also be taken, and one 15-credit MSc-level course is worth 33 hours. You will also need to take—and pass!—exams in these courses. The courses you take should be selected in consultation with your supervisor. Part of the aim is to broaden your mathematical knowledge, so you shouldn’t automatically restrict yourself to courses close to your research area. In addition, the School sometimes runs internal graduate courses on specific topics. It may be useful to sit in on other particularly relevant MSc and undergraduate modules, although it is polite to check with the lecturer beforehand.

Outside events include conferences, workshops and courses both in the UK and overseas, and seminars and lectures in other nearby universities. Your supervisor(s) will probably alert you to some of these, but they probably don’t know about everything that happens, so it is a good idea to keep your eyes open. If you hear of something you would like to attend, please discuss it with your supervisor as soon as possible. Depending on your funding source, you may have a pot of money available for attending outside events. Outside events include conferences, workshops and courses both in the UK and overseas, and seminars and lectures in other nearby universities. Your supervisor(s) will probably alert you to some of these, but they probably don’t know about everything that happens, so it is a good idea to keep your eyes open. If you hear of something you would like to attend, please discuss it with your supervisor as soon as possible. Depending on your funding source, you may have a pot of money available for attending outside events. Otherwise, you can apply for funding for each event from the School’s Research Committee, the University, sometimes the conference organisers and sometimes various educational charities or trusts. Applications for funding from the School have to be made through your supervisor.

Teaching

There are often opportunities for research students to assist with teaching in the School. As well as allowing you to earn some money, teaching can be an enjoyable experience, and looks good on your CV for both academic and non-academic jobs. However, you should not be doing so much teaching that it interferes with your research; if you are worried about this then you
should speak to your supervisor immediately.

In your first, second and third year you can do up to 22 hours of teaching in each semester without asking your supervisor. It is possible to do more than this, if you wish, but you will need your supervisor’s permission. In your fourth year (when your primary focus should be on finishing your thesis!), all teaching must be approved by your supervisor.

To be allowed to undertake teaching roles in the School, you must do the Faculty-run ‘Graduate Teaching Assistant/Demonstrating’ course and you should do any School-based demonstrator training.

Structure of a PhD Programme

A full-time PhD programme can, in principle, last up to four years; indeed, University regulations do **not** allow you to submit after four years. However, your funding source may not provide support for this long, in which case you will probably want to finish sooner. Most students aim to submit their thesis within three years; quite a number achieve this but the majority take slightly longer. If you are funded through the EPSRC DTA or through the School then you will normally be granted three and a half years of funding; no extension to this is possible.

There is no set schedule for a PhD. But as a rough guide, you will probably start out by reading graduate-level textbooks and attending graduate-level courses in and around your area. As the first year goes on, you will progress to reading research articles more closely related to the exact topic on which you will write your thesis, and perhaps begin to work on research problems. By the end of the first year you should ideally have some initial research results, but this is not yet essential. The second and third years are likely to be the core of your research project, when you obtain the main results that will make up your thesis. Ideally, you will be writing up as you go along (see above), so that you will be in a position to submit your thesis at the end of your third year.

eProg

eProg is an online system by which you and your supervisor can monitor your progress. There are lots of forms to fill out, but the majority are not too onerous. You should make sure that eProg contains an honest assessment of your progress as this will be used as supporting evidence should you need to apply for an interruption or extension (see below). For international students, eProg is used to monitor your attendance (which the UK government require the University to do).

End-of-year reports

Towards the end of each year you will write and submit a yearly report. The exact content and length should be agreed with your supervisor. In the first year, it might typically contain an expository account of the material you have studied, perhaps a literature survey or an account of open problems in the area (some of which you might solve in subsequent years) and the methods that might be used to study them. Often the continuation report forms the basis of the introductory chapters of your thesis. In the second year, it might typically include some early results of your research. In the third year, it should normally be a fairly complete draft of your thesis.

You must submit your report by the end of month 9 in each year (if you start in September then your report must be handed in by 30th June). There will be a short oral exam conducted by your supervisor and one other member of staff. The format of the oral exam will depend
but you may be asked to give a short presentation about your work, talk about the results in your report, or talk briefly about the MAGIC courses you have attended. The examiners then decide whether to allow you to continue into the following year of your PhD. The majority of students are allowed to continue on the PhD programme (possibly after doing some remedial work on the report and re-submitting it), but the examiners may possibly decide that doing so is not in your best interests. In this case, you will often be permitted to submit a shorter thesis, perhaps based on your report, which will be examined for an MPhil degree (a masters-level qualification).

Special Circumstances—what to do when things go wrong

You have a maximum of 4 years in which to submit your thesis, so if your research is being impeded by factors outside your control (e.g. illness, personal or family problems), it is essential that you tell your supervisor as soon as possible. You should also inform the School’s postgraduate office by completing a mitigating circumstances form. You should also collect as much evidence as you can (e.g. doctor’s notes), since you may need to apply for permission to interrupt (take a break from) your studies.

There are several types of interruption and you should talk to your supervisor or the postgraduate office about which is the most appropriate.

- An **interruption**: this is for when personal, family or health problems that occur during years 1–3 that mean that you’re unable to work on your research.

- An **extension to programme**: this is for when you require additional laboratory time due to significant unforeseen delays (such as severe equipment failure). (Bad time management, poor planning, or finding a theorem is harder to prove than you thought are not good enough reasons!)

- An **extension to submission pending**: this is for when you have personal, family or health problems in year 4.

You will not be allowed to back-date any request for an interruption before the last eProg monitoring point. This is why it is important to ensure that your eProg records are up-to-date and contain an honest assessment of how your research is going.

The Thesis

The main requirement for a PhD is to produce a thesis containing a significant body of original research. While the major part of the thesis should document your own research, it can and should also contain expository background chapters showing that you understand the wider context in which you are working.

There is no set length for a thesis. As a very rough guide, 100–130 pages (in the University’s official style, which is A4 widely spaced with large margins) might be considered typical in mathematics. But yours might need to be much longer if it is padded with calculations, diagrams, tables or source code, and could be significantly shorter if it contains dense, technical proofs. (There is a formal maximum thesis length laid down by the University, but you are extremely unlikely to reach this limit in mathematics!)

The best way to typeset mathematics is with \LaTeX{} and you will almost certainly use it to produce your thesis. If you are not familiar with \LaTeX{}, then you should attend the introductory course on \LaTeX{} at the start of Semester 1. In addition, there are many (free!) guides to \LaTeX{} on the web. Many postgraduate students are already highly adept at using \LaTeX{} and may be willing to help you. The University has very strict regulations governing the presentation of
theses; the School website has \LaTeX style and template files which will help you to produce the correct format and typographic layout.

You have to give formal notice of intention to submit your thesis some time before you do so; this is so that the University can appoint examiners for you. You have to submit your thesis both electronically (via eScholar) and in hardcopy (two soft-bound copies).

The Viva

The second requirement for a PhD is to pass an oral examination, usually called the “viva voce” or just “viva”. When you give notice of intention to submit the thesis, you will normally be assigned an internal examiner (from within the School, but not one of your supervisors) and an external examiner (from another university). On rare occasions, if there is no possible internal examiner with suitable expertise, you may have two external examiners and an internal “chair”. The examiners will read the thesis, and arrange a date for the viva. Usually, the only people present at the viva are the examiners and candidate; University regulations do permit other people (e.g. your supervisor) to attend but in practice this is rare.

The exact format of the viva is largely at the discretion of the examiners, so it is difficult to offer precise advice. But generally speaking, the examiners will ask you questions, and your answers will be expected (i) to convince them that the thesis is genuinely your own work and (ii) to show a good general understanding of your subject area. You are usually allowed to bring a copy of your thesis into the viva for reference, but you should know the main ideas and key points without needing to refer to it. If the examiners have found any problems with your thesis (e.g. gaps in proofs) then they will also discuss these with you. They may ask you questions on any topic, ranging from the technical details of the proofs in your thesis to quite general mathematical questions. Don’t panic if you get something wrong, or if they ask you something which you don’t know — it is their job to ask taxing questions, but they know that nobody knows everything and nobody answers every question perfectly; indeed, they are probably more interested in how you approach a question than in whether you know the answer.

The Result

At the end of your viva, your examiners will ask you to leave the room so that they can discuss the outcome. Formally, the examiners only make a recommendation to the University, but (unless the examiners disagree or there are serious complications) it is unlikely that their decision will be overturned. The examiners may (although they don’t have to) give you an indication of their verdict on the day, but anything they do tell you is strictly unofficial, and has no formal standing until confirmed by the University in writing. The possible outcomes are:

- **pass** with no corrections — hooray!
- **pass subject to minor corrections** — also hooray! Your thesis is fundamentally okay, but you need to make a small number of specified changes (often typographical errors or small mathematical slips) to the satisfaction of the internal examiner;
- **resubmit a revised thesis** — your thesis is not quite up to the required standard (e.g. there may be a substantial error in one of your proofs, or there may be so many small errors that they cannot be dismissed as ‘minor corrections’), but you have the opportunity to submit a revised thesis (which may or may not involve another viva);
• fail — to be avoided! The examiners may recommend the award of an MPhil (possibly after minor corrections, or after submitting a revised version), or they may recommend no award at all.

The most common outcome is “pass subject to minor corrections”. Your examiners may give you an indication of the corrections required, but you will be formally notified of them by the University. You normally then have a month in which to perform the corrections. Once the internal examiner has approved the corrected version, you then submit a final electronic copy of your thesis to the University via eScholar. The University will then normally formally approve the award of your PhD, and you will be invited to attend a graduation ceremony (and you can now call yourself Doctor!). Congratulations!

If the result of the viva isn’t to your liking then there is a University procedure for appealing. However, you can only appeal on very specific grounds.

And Afterwards . . . ?

People do PhDs for many reasons: a deep interest in the subject, as a personal challenge, as the first step towards a career in academia, to gain promotion at their home institution, or perhaps just because they drifted into it. But at some point you will need to give serious thought to what happens after you’ve submitted your thesis.

The academic job market in mathematics is extremely competitive, and more or less however good your thesis, there is no guarantee of a University position at the end of it. At best, you will probably have to move through several temporary teaching or research jobs, perhaps in farflung places, before being a serious candidate for a permanent post. If you do want to try for an academic job, the most important things are to start publishing your research as early as possible, and to attend and speak at as many conferences and events as you can, so as to make yourself known in the academic community.

There are also many possible destinations outside academia. Recent PhD students in mathematics have gone into finance and banking, IT and computing, teaching, science communication, and mathematical research in industry or the public sector. If you already have an idea where you are going, then it is worth investigating early what skills and experience employers are looking for, as it may be possible to tailor your doctoral studies to give you some relevant experience (e.g. by including some computer programming). Even if not, then the skills developed whilst studying for a PhD are highly transferable and in demand by many employers. The University has contacts with many employers, and you should make full use of the University’s Careers Service and careers events organised within the School and University.

A Final Word

This was supposed to be a short informal guide to studying for a PhD. An even shorter version would be “Doing a PhD involves a lot of hard, independent, work — but the School will do its best to help you”. We hope you make the most of all the opportunities (both academic and otherwise) at Manchester and enjoy your time here!

M.K. & C.W.
7th August 2014