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Why?

An advertisement
R. Gray, D. Macpherson, C. E. Praeger, G. F. Royle.
“Set homogeneous directed graphs” J. Comb. Theory Ser. B (in press)

It is an interesting area

I Provides a meeting-point of ideas from combinatorics, model theory,
and permutation group theory.

I At a workshop in Leeds on this topic a few weeks ago several speakers
mentioned semigroups in their talks...
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Homogeneous relational structures

Definition
A relational structure M is homogeneous if every isomorphism between
finite substructures of M can be extended to an automorphism of M.

Relational structures

I a relational structure consists of a set A, and some relations R1, . . . ,Rm

(can be unary, binary, ternary, ...)
I an (induced) substructure is obtained by taking a subset B ⊆ A and

keeping only those relations where all entries in the tuple belong to B
I an isomorphism is a “structure preserving” mapping (i.e. a bijection φ

such that φ and φ−1 are both homomorphisms)

Example

A graph Γ is a structure (VΓ,∼) where VΓ is a set, and ∼ is a symmetric
irreflexive binary relation on VΓ.
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Examples of homogeneous structures

X - a pure set
I automorphism group is the full symmetric group where any partial

permutation can be extended to a (full) permutation

(Q,≤) - the rationals with their usual ordering
I the automorphisms are the order-preserving permutations
I isomorphisms between finite substructures can be extended to

automorphisms that are piecewise-linear

Rado’s countable random graph R

I if we choose a countable graph at random (edges independently with
probability 1

2 ), then with probability 1 it is isomorphic to R
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Some history

Origins

I The notion of homogeneous structure goes back to the fundamental
work of Fraïssé (1953)

I Fraïssé proved a theorem which helps us determine if a countable
structure is homogeneous, using the ideas of:

I age - the finite substructures they embed, and
I amalgamation property - the way that they can be glued together

Homogeneous structures are nice because they:
I have “lots of” symmetry;
I often have rich and interesting automorphism groups;
I give examples of “nice” ℵ0-categorical structures (precisely those that

have quantifier elimination).
(M is ℵ0-categorical if all countable models of the first-order theory of M are
isomorphic to M.)
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Classification results

For certain families of relational structure, those members that are
homogeneous have been completely determined.

Some classification results

Finite Countably infinite
Posets (trivial) Schmerl (1979)
Tournaments Woodrow (1976) Lachlan (1984)
Graphs Gardiner (1976) Lachlan & Woodrow (1980)
Digraphs Lachlan (1982) Cherlin (1998)



Set-homogeneity

Definition
A relational structure M is set-homogeneous if whenever two finite
substructures U and V are isomorphic, there is an automorphism
g ∈ Aut(M) such that Ug = V .

I It is a concept originally due to Fraïssé and Pouzet.
I The permutation group-theoretic weakening

homogeneous  set-homogeneous

relates to the model-theoretic weakening

elimination of quantifiers  model complete.

I Droste et al. (1994) - proved a set-homogeneous analogue of Fraïssé’s
theorem, where the amalgamation property is replaced by something
called the twisted amalgamation property.
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Set-homogeneity vs homogeneity

I Clearly if M is homogeneous then M is set-homogeneous.
I What about the converse?

General question

How much stronger is homogeneity than set-homogeneity?



Set-homogeneous finite graphs

Ronse (1978)
...proved that for finite graphs homogeneity and set-homogeneity are
equivalent.

I He did this by classifying the finite set-homogeneus graphs and then
observing that they are all, in fact, homogeneous.

I This generalised an earlier result of Gardiner, classifying the finite
homogeneous graphs.

Enomoto (1981)
...gave a direct proof of the fact that for finite graphs set-homogeneous
implies homogeneous.

I this avoids the need to classify the set-homogeneous graphs
I the set-homogeneous classification can then be read off from Gardiner’s

result
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Some graph theoretic terminology and notation

Definition
Γ = (VΓ,∼) - a graph

So ∼ is a symmetric irreflexive binary relation on VΓ

I Let v be a vertex of Γ. Then the
neighbourhood Γ(v) of v is the set of all
vertices adjacent to v. So

Γ(v) = {w ∈ VΓ : w ∼ v}

I For X ⊆ VΓ we define

Γ(X) = {w ∈ VΓ : w ∼ x ∀x ∈ X}



Enomoto’s argument

Lemma (Enomoto’s lemma)
Let Γ be a finite set-homogeneous graph and let U and V be induced
subgraphs of Γ. If U ∼= V then |Γ(U)| = |Γ(V)|.

Proof.

I Let g ∈ Aut(Γ) such that Ug = V .
I Then (Γ(U))g = Γ(V).
I In particular |Γ(U)| = |Γ(V)|.
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Enomoto’s argument
Γ - finite set-homogeneous graph X,Y - induced subgraphs
f : X → Y an isomorphism

f

X Y

Γ

Claim: The isomorphism f : X → Y is either an automorphism, or extends
to an isomorphism f ′ : X′ → Y ′ where X′ ) X and Y ′ ) Y .
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Γ - finite set-homogeneous graph X,Y - induced subgraphs
f : X → Y an isomorphism

f

X Y

Γ

Proof of claim.
I Choose a ∈ Γ \ X with |Γ(a) ∩ X| as large as possible.

I Choose d ∈ Γ \ Y with |Γ(d) ∩ Y| as large as possible.
I Suppose |Γ(a) ∩ X| ≥ |Γ(d) ∩ Y| (the other possibility is dealt with

dually using the isomorphism f−1)
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I Let A = Γ(a) ∩ X and define B = f (A).

I A ∼= B & Γ is set-homogeneous so by the lemma |Γ(A)| = |Γ(B)|.
I Γ(B) ∩ Y = f (Γ(A) ∩ X) so |Γ(B) ∩ Y| = |Γ(A) ∩ X|.
I ∴ |Γ(B) \ Y| = |Γ(A) \ X)| ≥ 1
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I Let b ∈ Γ(B) \ Y and extend f to f ′ : X ∪ {a} → Y ∪ {b} by defining
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I Γ(b) ∩ Y = B by maximality in original definition of a,
I ∴ f ′ is an isomorphism.
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Set-homogeneous digraphs
Question: Does Enomoto’s argument apply to other kinds of structure?

Definition (Digraphs)

A digraph D consists of a set VD of vertices together with an irreflexive
antisymmetric binary relation→ on VD.

Definition (in- and out-neighbours)

A vertex v ∈ VD has a set of in-neighbours and a set of out-neighbours

D+(v) = {w ∈ VD : v→ w}, D−(v) = {w ∈ VD : w→ v}.

A vertex with red in-neighbours and blue out-neighbours
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Enomoto’s argument for digraphs
D - finite set-homogeneous digraph X,Y - induced subdigraphs
f : X → Y an isomorphism
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I Follow the same steps but using out-neighbours instead of neighbours.
I Everything works, except the very last step.

I We do not know how b is related to the vertices in the set Y \ B.
So f ′ may not be an isomorphism.
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Enomoto’s argument for digraphs
The key point:

I For graphs, given u, v ∈ VΓ there are 2 possibilities

u ∼ v or u ‖ v (meaning that u & v are unrelated).

I For digraphs, given u, v ∈ VD there are 3 possibilities

u→ v or v→ u or u ‖ v.

However, the argument does work for tournaments:

Definition
A tournament is a digraph where for any pair of vertices u, v either u→ v or
v→ u.

Corollary

Let T be a finite tournament. Then T is homogeneous if and only if T is
set-homogeneous.
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A non-homogeneous example

Example

Let Dn denote the digraph with vertex set {0, . . . , n− 1} and just with arcs
i→ i + 1 (mod n).

The digraph D5 is set-homogeneous but is not homogeneous.��������a
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I (a, c) 7→ (a, d) gives an isomorphism between induced subdigraphs that
does not extend to an automorphism

I However, there is an automorphism sending {a, c} to {a, d}.



Finite set-homogeneous digraphs

Question
How much bigger is the class of set-homogeneous digraphs than the class of
homogeneous digraphs?

Theorem (RG, Macpherson, Praeger, Royle (2011))

Let D be a finite set-homogeneous digraph. Then either D is homogeneous
or it is isomorphic to D5.

Proof.
I Carry out the classification of finite set-homogeneous digraphs.
I By inspection note that D5 is the only non-homogeneous example.
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Symmetric-digraphs (s-digraphs)
A common generalisation of graphs and digraphs

Definition (s-digraph)

I An s-digraph is the same as a digraph except that we allow pairs of
vertices to have arcs in both directions.

I So for any pair of vertices u, v exactly one of the following holds:

u→ v, v→ u, u↔ v, u ‖ v.

I Formally we can think of an s-digraph as a structure M with two binary
relations→ and ∼ where

I ∼ is irreflexive and symmetric (and corresponds to↔ above)
I → is irreflexive and antisymmetric
I ∼ and→ are disjoint

I A graph is an s-digraph (where there are no→-related vertices)
I A digraph is an s-digraph (where there are no ∼-related vertices)
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Classifying the finite homogeneous s-digraphs

I Lachlan (1982) classified the finite homogeneous s-digraphs

To state his result we need the notions of
I complement
I compositional product



Finite homogeneous s-digraphs
Definition (Complement)

If M is an s-digraph, then M̄, the complement, is the s-digraph with the same
vertex set, such that u ∼ v in M̄ if and only if they are unrelated in M, and
u→ v in M̄ if and only if v→ u in M.
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Finite homogeneous s-digraphs

Definition (Composition)

If U and V are s-digraphs, the
compositional product U[V] denotes
the s-digraph which is

“|U| copies of V”

Vertex set = U × V

→ relations are of form
(u, v1)→ (u, v2) where v1 → v2 in V ,
or of form (u1, v1)→ (u2, v2) where
u1 → u2 in U,

Similarly for ∼.

K2 D3 K2[D3]
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Some finite homogeneous s-digraphs
Sporadic examples
L - finite homogeneous graphs, A - finite homogeneous digraphs,
S - finite homogeneous s-digraphs
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H0 ∈ A H1 ∈ S
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C5, K3 × K3, H0, H1, H2



Some finite homogeneous s-digraphs
Sporadic examples

H2 ∈ S

1

H2 ∈ S



Lachlan’s classification

L - finite homogeneous graphs, A - finite homogeneous digraphs,
S - finite homogeneous s-digraphs

Theorem (Lachlan (1982))
Let M be a finite s-digraph. Then

Gardiner

(i) M ∈ L ⇔ M or M̄ is one of: C5, K3 × K3, Km[K̄n] (for 1 ≤ m, n ∈ N);

Lachlan

(ii) M ∈ A ⇔ M is one of: D3, D4, H0, K̄n, K̄n[D3], or D3[K̄n], for some
n ∈ N with 1 ≤ n;

(iii) M ∈ S ⇔ M or M̄ is isomorphic to an s-digraph of one of the following
forms. Kn[A],A[Kn], L, D3[L], L[D3], H1, H2, where n ∈ N with 1 ≤ n, A ∈ A
and L ∈ L.
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Set-homogeneous s-digraphs
Theorem (RG, Macpherson, Praeger, Royle (2011))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with n ∈ N)

(i) Kn[D5] or D5[Kn]

(ii) Jn
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3 Sporadic
examples
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A monster 27-vertex sporadic example H3



Structure of the proof

Part 1: The hunt
Build a catalogue of small examples/families of examples.

Part 2: The induction
Argue by induction on |D| that every example is in our list, making use of

Lemma. Let D be a set-homogeneous digraph and v ∈ D. Then both D+(v)
and D−(v) induce (smaller) set-homogeneous digraphs.

Case analysis: each case leading to either (a) contradiction (b) forces the
structure of an example in our list.
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Why might a semigroup theorist be interested?

Inverse semigroups
I Relationship between partial and global symmetries

I Factorizable inverse monoids (nice looking survey (Fitzgerald, 2010)).

I James East says there is a variation of factorizable which gives the
analogous class but for set-homogeneity.

Semigroups (full endomorphism monoids)
I Maltcev, Mitchell, Péresse, Ruškuc: Bergman property, Sierpiński rank.
I Bodirsky and Pinsker: reducts of the random graph.
I Bonato, Delić, Dolinka, Mašulović, Mudrinski: structural properties.
I Lockett, Truss: generic endomorphisms of homogeneous structures.

Homomorphism homogeneity
I Extending homomorphisms to endomorphisms, work of Cameron,

Nešetřil, Lockett, Mašulović, Dolinka.
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