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Where to begin?

Restriction semigroups may be obtained as/from:

Varieties of algebras

Representation by (partial) mappings

Generalised Green’s relations

Inductive categories and constellations

Notation

S will always denote a semigroup

E (S) is the set of idempotents of S and

E ⊆ E (S)
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The relations R and L

For any a, b ∈ S we have

aR b ⇔ aS1 = bS1

⇔ ∃s, t ∈ S1 with a = bs and b = at.

For any a, b ∈ S we have

aL b ⇔ S1a = S1b
⇔ ∃s, t ∈ S1 with a = sb and b = ta.

R (L) is a left (right) congruence

R and L are the universal relation on any group
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The relations R and L: regular and inverse semigroups

Definition S is regular if for all a ∈ S there exists x ∈ S with a = axa.

Notice that if a = axa, then ax , xa ∈ E (S) and

ax R aL xa.

Fact S is regular if and only if every R-class (or L-class) contains an
idempotent.

Definition S is inverse if S is regular and E (S) is a semilattice.

Fact S is inverse if and only every element has a unique inverse, i.e. for all
a ∈ S there exists a unique a′ in S such that

a = aa′a and a′ = a′aa′.

Fact S is inverse if and only if every R-class and every L-class contains a
unique idempotent.
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The relations R̃E and L̃E

The relation R̃E is defined by a R̃E b if and only if

ea = a ⇔ eb = b

for all e ∈ E .

Note if a R̃E e ∈ E , then as ee = e we have ea = a.

The relation L̃E is defined by a L̃E b if and only if

ae = a ⇔ be = b

for all e ∈ E .

R̃E and L̃E are equivalence relations.

If M is a monoid and E = {1}, then R̃E and L̃E are universal.

these relations were introduced by El-Qallali in his 1980 thesis [5]
(under Fountain) in case E = E (S), later generalised by Lawson [13]
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The relations R̃E and L̃E - connection to R and L

Fact For any semigroup S and any E

R ⊆ R̃E .

Proof Let aR b. Then a = bs and b = at for some s, t ∈ S1.

Hence

ea = a ⇒ eat = at ⇒ eb = b ⇒ ebs = bs ⇒ ea = a.

Fact If S is regular and E = E (S), then R̃E = R.

Proof If a R̃E(S) b and a = axa, b = byb, then b = axb and a = bya.
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Restriction semigroups: first definition

Definition A semigroup S is left restriction with distinguished
semilattice E if:

E is a semilattice;

every R̃E -class contains an idempotent of E ;
it is then easy to see that for every a ∈ S the R̃E -class of a contains
a unique element of E , which we call a+;

the relation R̃E is a left congruence and

the left ample condition (AL) holds:

for all a ∈ S and e ∈ E , ae = (ae)+a.

Right restriction semigroups are defined dually. A semigroup is
restriction if it is left and right restriction with respect to the same
distinguished semilattice.

Example Let M be a monoid. Then M is restriction with distinguished
semilattice E = {1}.
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Inverse semigroups are restriction

Let S be an inverse semigroup. Then with E = E (S):

E is a semilattice;

R̃E = R is a left congruence;

every R-class contains an idempotent: we have

a+ = aa′;

for any a ∈ S and e ∈ E

(ae)+a = (ae)(ae)′a = ae(ea′)a = ae(a′a) = a(a′a)e = ae.

Hence S is left restriction (w.r.t. E (S)); dually S is right restriction, so
that S is restriction.
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Semigroups and representations

Every semigroup S embeds in a full transformation semigroup TX

Every group embeds in a symmetric group SX

Every inverse semigroup S embeds (as an inverse semigroup) in the
symmetric inverse semigroup IX
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Restriction semigroups: representations

TX ,SX and IX are all subsemigroups of the semigroup PT X of all partial
mappings of X .

PT X is left restriction with distinguished semilattice

E = {IY : Y ⊆ X}

and with
α+ = Idom α

.

S is left restriction if and only if it embeds in some PT X in a way
that preserves + (folklore: Trokhimenko [21]).
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Restriction semigroups: varieties

Let S = (S , · ,+ ) be a semigroup equipped with a unary operation + (that
is, S is a unary semigroup).

Fact S is left restriction with distinguished semilattice

E = {a+ : a ∈ S}

if and only if the following identities hold:

x+x = x , x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x .

If the above identities hold then for any a+ ∈ E ,

a+ = (a+a)+ = a+a+

so that we see E is a semilattice.
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Restriction semigroups: varieties

Consequently, left restriction semigroups form a variety of unary
semigroups.

Dually, right restriction semigroups form a variety of unary
semigroups, with unary operation denoted by ∗, satisfying the
left/right duals of the axioms above.

A bi-unary semigroup is restriction if and only if satisfies the identities
for left and right restriction semigroups together with

(a∗)+ = a∗ and (a+)∗ = a+.

Since (left) restriction semigroups form varieties, free objects exist.

The free (left) restriction semigroup on any set X embeds into the
free inverse semigroup on X ([9, 8]).
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A bit of history

Different schools arrived at (left) restriction semigroups via different
directions from 1960s onwards:

Schweizer, Sklar, Schein, Trokhimenko: function systems
[16, 17, 18, 19, 20]
Let T be a subsemigroup of PT X or BX (semigroup of binary
relations on X ).
T may be equipped with additional operations such as +, ∩,
(f , g) 7→ f +g etc.
Can such T be axiomatised by first order formulae? By identities?

Lawson: Ehresmann semigroups [13]
Lawson found a correspondence between Ehresmann semigroups and
certain categories equipped with two orderings. As a special case,
restriction semigroups correspond to inductive categories.
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A bit more history

Jackson and Stokes: closure operators [10]
Introduced ‘twisted C -semigroups’, with an axiomatisation equivalent
to the one given here.

Manes, Cockett, Lack: category theory, computer science [2, 14].
Gave the axioms above. Also interested in restriction categories.

Fountain: generalisations of regular and inverse semigroups [6].

Jones: P-restriction semigroups obtained from regular ∗-semigroups
[11].
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The relations R∗ and L∗

The relation R∗ on S is defined by the rule that aR∗ b if and only if

xa = ya ⇔ xb = yb

for all x , y ∈ S1.

R ⊆ R∗ ⊆ R̃E

A monoid M is left PP if every principal left ideal is projective.

M is left PP if and only if every R∗-class contains an idempotent.

This observation by Fountain [6] led to the introduction of abundant,
adequate semigroups, etc.
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(Left) ample semigroups

Definition A semigroup S is left ample (formerly, left type A) if E (S) is
a semilattice, every R∗-class contains an idempotent, and for all
a ∈ S , e ∈ E (S),

ae = (ae)+a

where a+ is the unique idempotent in the R∗-class of a.

Equivalently, S is left ample if and only if it is left restriction and
R∗ = R̃E .

Right ample semigroups are defined dually, and a semigroup is ample if it
is both left and right ample.

Fact A unary semigroup is left ample if and only if it embeds in some IX
[7].

Fact (Left) ample semigroups form a quasi-variety; the variety they
generate is the variety of (left) restriction semigroups [9, 8].
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Inverse semigroups: groups and semilattices

There are several approaches to structure of inverse semigroups, using
groups and semilattices. These may be adapted to (left) restriction
semigroups.

McAlister’s approach uses proper covers: if S is inverse then it has a
proper preimage Ŝ such that E (Ŝ) ∼= E (S) and such that the structure of
Ŝ is known - it is isomorphic to a P-semigroup.

P-semigroups are closely related to semidirect products.
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Restriction semigroups: monoids and semilattices

Let S be left restriction.

S is reduced if |E | = 1. A reduced left restriction semigroup is simply
a monoid!

σE is the least congruence identifying all the idempotents of E .

The left restriction semigroup S/σE is reduced.

A left restriction semigroup S is proper if R̃E ∩ σE = ι.

If S is proper left restriction, then θ : S → E × S/σE given by

sθ = (s+, sσE )

is an injection.
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Semidirect products

Let M be a monoid and Y a set. Then M acts on the left of Y if there
is a map

M × Y → Y ; (m, y) 7→ m · y ,

such that
1 · y = y and (mn) · y = m · (n · y).

Suppose now that Y is a semigroup. Then M acts by morphisms if, in
addition,

m · (yz) = (m · y)(m · z).

In this case, define a product on Y ×M by

(y ,m)(z , n) = (y(m · z),mn).

This product is associative, yielding the semidirect product Y ∗M.
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An example: left restriction semigroups

If M is a group and Y a semilattice, Y ∗M is proper inverse.

If M is a monoid and Y a semilattice, Y ∗M is proper left restriction.

Let S be a left restriction monoid with distinguished semilattice E .
Define

s · e = (se)+.

Then this is an action of S on E .

Let s ∈ S and e, f ∈ E . Then from the ample condition ae = (ae)+a
and the identity (x+y)+ = x+y+,

s · ef = (sef )+ =
(
(se)+sf

)+
= (se)+(sf )+ = (s · e)(s · f ).

From the above, E ∗ S is proper left restriction.
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Proper covers of left restriction semigroups

Let S be left restriction.

A proper cover of S is a proper left restriction semigroup Ŝ and an
onto morphism θ : Ŝ ։ S such that θ separates distinguished
idempotents.

If S is a monoid then

Ŝ = {(e, s) : e ≤ s+} ⊆ E ∗ S

is a proper cover of S

Every left restriction semigroup has a proper cover [1].
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Proper left restriction semigroups: a recipe

Let T be a monoid acting on the left of a semilattice X via morphisms.
Suppose that X has subsemilattice Y with upper bound ε such that
(a) for all t ∈ T there exists e ∈ Y such that e ≤ t · ε
(b) if e ≤ t · ε then for all f ∈ Y, e ∧ t · f ∈ Y.
Then (T ,X ,Y) is a strong left M-triple.

For a strong left M-triple (T ,X ,Y) we put

M(T ,X ,Y) = {(e, t) ∈ Y × T : e ≤ t · ε}

and define
(e, s)(f , t) = (e ∧ s · f , st), (e, s)+ = (e, 1).

Then M(T ,X ,Y) is proper left restriction.
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The ‘covering’ approach for left restriction semigroups

Theorem A left restriction semigroup S is proper if and only if it is
isomorphic to some M(T ,X ,Y) [1].

Important point In the above result, we can take

T = S/σE and Y = E .

By replacing T with a right cancellative monoid, we can specialise to the
left ample case: see also Fountain [6] and Lawson [12].
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Proper restriction semigroups

A restriction semigroup S is proper if

R̃E ∩ σE = ι = L̃E ∩ σE .

Every restriction semigroup has a proper cover [8]

If S is proper restriction, then as S is proper left restriction,

S ∼= M(T ,X ,Y)

where T = S/σE and Y = E , and as S is proper right restriction,

S ∼= M′(Y,X ′,T ),

where M′(Y,X ′,T ) is constructed from T acting on the right of a
semilattice X ′.

Clearly the left and right actions of T must be connected in some way.
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A structure theorem for proper restriction semigroups: the
set-up

Definition Let T be a monoid, acting partially on the left and right of a
semilattice Y, via · and ◦ respectively. Suppose that both actions preserve
the partial order and the domains of each t ∈ T are order ideals. Suppose
in addition that for e ∈ Y and t ∈ T , the following and their duals hold:
(a) if ∃e ◦ t, then ∃t · (e ◦ t) and t · (e ◦ t) = e;
(b) for all t ∈ T , there exists e ∈ Y such that ∃e ◦ t.

Then (T ,Y) is a strong M-pair.

We put
M(T ,Y) = {(e, s) ∈ Y × T : ∃e ◦ s}

and define operations by

(e, s)(f , t) = (s · (e ◦ s ∧ f ), st), (e, s)+ = (e, 1) and (e, s)∗ = (e ◦ s, 1).
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A structure theorem for proper restriction semigroups: the
result

Theorem: Cornock and G [4] If (T ,Y) is a strong M-pair, then

M(T ,Y) ∼= M′(Y,T ),

where M′(Y ,T ) is constructed dually to M(T ,Y).

Theorem: Cornock and G [4] A semigroup is proper restriction if and only
if it is isomorphic to some M(T ,Y).

Corollary: Lawson [12] A semigroup is proper ample if and only if it is
isomorphic to M(C ,Y) for a cancellative monoid C .

Corollary: Petrich and Reilly, [15] A semigroup is proper inverse if and only
if it is isomorphic to M(G ,Y) for a group G .
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