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History

I David Rees 1948 studies ideal structure of cancellative
monoids

I Perrot 1970’s studies inverse hull

I Cohn and von Karger prove rigid monoids embed in groups

I 1980’s study of automatic groups

I 1990’s study of self-similar groups

I Recently, Alan Cain has studied automaton semigroups



LRMs

Definition
A monoid M is said to be a left Rees monoid (LRM) if the
following hold:

1. M is left cancellative: ab = ac ⇒ b = c for all a, b, c ∈ M

2. Incomparable principal right ideals are disjoint: aM ⊆ bM or
bM ⊆ aM or aM ∩ bM = ∅ for all a, b ∈ M

3. Each principal right ideal is properly contained in only a finite
number of prinicipal right ideals

We define right Rees monoids analagously: right cancellative
monoids with disjoint incomparable principal left ideals and finite
inclusion of principal left ideals



Group of units

For a monoid M we will denote by G (M) the group of units of M;
that is, the elements which are uniquely invertible in the group
theoretic sense.



Big Proposition

Proposition

Let M be an LRM. Let X be a transversal of the generators of the
maximal proper principal right ideals, and denote by X ∗ the
submonoid generated by the set X . Then the monoid X ∗ is free,
M = X ∗G (M) and every element of M can be written uniquely as
a product of an element of X ∗ and an element of G (M).



Self-similar group actions

Definition
Let G be a group and X ∗ be the free monoid on X . We will say
that G and X ∗ act self-similarly on each other if there exist two
maps G × X ∗ → X ∗, (g , x) 7→ g · x called the action and
G × X ∗ → G , (g , x) 7→ g |x called the restriction satisfying the
following 8 axioms:

(SS1) 1 · x = x (SS2) (gh) · x = g · (h · x)

(SS3) g · 1 = 1 (SS4) g · (xy) = (g · x)(g |x · y)

(SS5) g |1 = g (SS6) g |xy = (g |x)|y
(SS7) 1|x = 1 (SS8) (gh)|x = g |(h·x)h|x

for all x , y ∈ X ∗ and g , h ∈ G .



Self-similar group actions

Proposition

Let M be an LRM. Then M admits a self-similar action.

Proof.
Let x ∈ X ∗ and g ∈ G (M). Since M = X ∗G (M) uniquely, we can
write gx uniquely as a product of an element of X ∗ and one of
G (M). So define gx = g · xg |x . It is easy to check that this
definition satifies the above axioms.



Zappa-Szép products

Definition
Let G be a group and X ∗ be the free monoid on X , such that
there is a self-similar action of G on X ∗. We will define the
Zappa-Szép product X ∗ ./ G to be their Cartesian product with
the following multiplication:

(x , g)(y , h) = (xg · y , g |y h)

for x , y ∈ X ∗ and g , h ∈ G .



Zappa-Szép products

Theorem
Every left Rees monoid is isomorphic to a Zappa-Szép product of a
free monoid and a group. Conversely every Zappa-Szép product of
a free monoid and a group is a left Rees monoid

Remark
What this says is that left Rees monoids and self-similar actions
are one and the same thing



Green’s R relation

Definition
Let M be a monoid, s, t ∈ M. Then sRt if sM = tM.

Remark
The relation R is an equivalence relation (in fact it is a left
congruence)

Lemma
Let M = X ∗G be an LRM, x , y ∈ X ∗, g , h ∈ G . Then xgRyh if,
and only if, x = y.



Rees monoids

Lemma
Let M be a left Rees monoid which is also right cancellative. Then
M is also a right Rees monoid.

Because of this lemma we will call right cancellative left Rees
monoids Rees monoids



Restriction map

Definition
For each x ∈ X ∗, define ρx : G → G by g → g |x and define
φx : Gx → G to be the restriction of ρx to Gx .

Lemma
An LRM is right cancellative iff φx is injective for all x ∈ X

Definition
An LRM with ρx bijective for all x ∈ X ∗ is called symmetric.



Symmetric Rees monoids

Theorem
An LRM M (which is a Zappa-Szép product of a free monoid X ∗

and a group G ) can be extended to the Zappa-Szép product of the
free group FG (X ) and the group G if, and only if, M is symmetric.

Proof.
(⇒) Straightforward: uniqueness and existence of restrictions
(⇐) Define g |x−1 := ρ−1

x (g) for x ∈ X and extend the restriction
to g |x for x ∈ FG (X ) by using rule (SS6):
g |xε1

1 x
ε2
2 ...xεn

n
= ((g |xε1

1
)|xε2

2
) . . . |xεn

n
xi ∈ X , εi = ±1. For x ∈ X ∗,

g ∈ G define g · x−1 := (g |x−1 · x)−1.



Monoid HNN-extensions

Definition
Let S be a monoid, T a submonoid of S and let α : T → S be an
injective homomorphism. Then M is a monoid HNN-extension of
S if M can be defined by the following monoid presentation

M = 〈S , t|R(S), ts = α(s)t ∀s ∈ T 〉,

where R(S) denotes the relations of S



Monoid multiple HNN-extensions

Definition
Let S be a monoid, T1, . . . ,Tn submonoids of S and let
αi : Ti → S be injective homomorphisms for each i . Then M is a
monoid multiple HNN-extension of S if M can be defined by the
following monoid presentation

M = 〈S , t1, . . . , tn|R(S), ti s = αi (s)ti ∀s ∈ Ti , i = 1, . . . , n〉,

where R(S) denotes the relations of S



Classification theorem

Theorem
Let S be a group, T1, . . . ,Tn finite index subgroups of S and let
αi : Ti → S be injective homomorphisms for each i , and let M be
the monoid multiple HNN-extension of S as defined above. Then
M is a Rees monoid. Furthermore, every Rees monoid can be
constructed in this manner



Generalisation to categories

I Left Rees categories

I Self-similar groupoid actions

I Category HNN-extensions



Sierpinski Gasket



Applying the theorems

I M is the monoid of similarity contractions the Sierpinski
gasket

I R, L and T be the maps which halve the gasket and translate
it, respectively, to the right, left and top of itself

I ρ is rotation by 2π/3 degrees

I σ is reflection in the verticle axis

I Group of isometries:

G = 〈ρ, σ|ρ3 = σ2 = 1, ρσ = σρ2〉

I M is a left Rees monoid, X = {L,R,T}, G group of units

I g |x = g for every g ∈ G , x ∈ X , so symmetric Rees monoid

I GT = {1, σ}
I Monoid presentation of M:

M = 〈ρ, σ,T |ρ3 = σ2 = 1, ρσ = σρ2, σT = Tσ〉



Thank you for listening


