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History
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David Rees 1948 studies ideal structure of cancellative
monoids

Perrot 1970's studies inverse hull

Cohn and von Karger prove rigid monoids embed in groups
1980’s study of automatic groups

1990’s study of self-similar groups

Recently, Alan Cain has studied automaton semigroups



LRMs

Definition
A monoid M is said to be a left Rees monoid (LRM) if the
following hold:

1. M is left cancellative: ab=ac = b= c forall a,b,ce M

2. Incomparable principal right ideals are disjoint: aM C bM or
bM C aM or aM N bM = () for all a,b e M

3. Each principal right ideal is properly contained in only a finite
number of prinicipal right ideals

We define right Rees monoids analagously: right cancellative
monoids with disjoint incomparable principal left ideals and finite
inclusion of principal left ideals



Group of units

For a monoid M we will denote by G(M) the group of units of M;
that is, the elements which are uniquely invertible in the group
theoretic sense.



Big Proposition

Proposition

Let M be an LRM. Let X be a transversal of the generators of the
maximal proper principal right ideals, and denote by X* the
submonoid generated by the set X. Then the monoid X* is free,
M = X*G(M) and every element of M can be written uniquely as
a product of an element of X* and an element of G(M).



Self-similar group actions

Definition

Let G be a group and X* be the free monoid on X. We will say
that G and X* act self-similarly on each other if there exist two
maps G x X* — X*, (g,x) — g - x called the action and

G x X* — G, (g,x) — glx called the restriction satisfying the

following 8 axioms:

(SS1) 1-x=x (552
(5S3) g-1=1 (5S4
(5S5)  gh=g  (SS6
(SS7) 1x=1 (SS8

forall x,y € X* and g,h € G.

(gh)-x =g (h-x)

g (xv)=(g-x)(glx"y)
gl = (&lx)ly

(gh)|x = &l(hx)hlx



Self-similar group actions

Proposition
Let M be an LRM. Then M admits a self-similar action.

Proof.

Let x € X* and g € G(M). Since M = X*G(M) uniquely, we can
write gx uniquely as a product of an element of X* and one of
G(M). So define gx = g - xg|x. It is easy to check that this
definition satifies the above axioms. O



Zappa-Szép products

Definition

Let G be a group and X* be the free monoid on X, such that
there is a self-similar action of G on X*. We will define the
Zappa-5zép product X* <1 G to be their Cartesian product with

the following multiplication:
(x. &)y, h) = (xg -y, &lyh)

for x,y € X* and g,h € G.



Zappa-Szép products

Theorem

Every left Rees monoid is isomorphic to a Zappa-Szép product of a
free monoid and a group. Conversely every Zappa-Szép product of
a free monoid and a group is a left Rees monoid

Remark
What this says is that left Rees monoids and self-similar actions
are one and the same thing



Green's R relation

Definition
Let M be a monoid, s,t € M. Then sRt if sM = tM.

Remark
The relation R is an equivalence relation (in fact it is a left
congruence)

Lemma
Let M = X*G be an LRM, x,y € X*, g,h € G. Then xgRyh if,
and only if, x = y.



Rees monoids

Lemma
Let M be a left Rees monoid which is also right cancellative. Then
M is also a right Rees monoid.

Because of this lemma we will call right cancellative left Rees
monoids Rees monoids



Restriction map

Definition
For each x € X*, define px : G — G by g — g|x and define
¢x : Gx — G to be the restriction of py to Gx.

Lemma
An LRM is right cancellative iff ¢ is injective for all x € X

Definition
An LRM with py bijective for all x € X* is called symmetric.



Symmetric Rees monoids

Theorem

An LRM M (which is a Zappa-Szép product of a free monoid X*
and a group G) can be extended to the Zappa-Szép product of the
free group FG(X) and the group G if, and only if, M is symmetric.

Proof.

(=) Straightforward: uniqueness and existence of restrictions
(<) Define g|,—1 := pg1(g) for x € X and extend the restriction
to g|x for x € FG(X) by using rule (SS6):

g| L2 g = ((g’xlfl)’X?) - ‘X;n x; € X,¢e; = £1. For x € X*,

g € G define g x 1= (gly1-x)7L O



Monoid HNN-extensions

Definition

Let S be a monoid, T a submonoid of S andlet & : T — S be an
injective homomorphism. Then M is a monoid HNN-extension of
S if M can be defined by the following monoid presentation

M = (S,t|R(S), ts=a(s)t VseT),

where R(S) denotes the relations of S



Monoid multiple HNN-extensions

Definition

Let S be a monoid, T1,..., T, submonoids of S and let

«;: T; — S be injective homomorphisms for each i. Then M is a
monoid multiple HNN-extension of S if M can be defined by the
following monoid presentation

M = <5, t1,..., tn’R(S), tis = Oé,'(S)l’,' Vse T;,i = 1,...,n>,

where R(S) denotes the relations of S



Classification theorem

Theorem

Let S be a group, Ti,..., T, finite index subgroups of S and let
aj: T; — S be injective homomorphisms for each i, and let M be
the monoid multiple HNN-extension of S as defined above. Then
M is a Rees monoid. Furthermore, every Rees monoid can be
constructed in this manner



Generalisation to categories

> Left Rees categories
» Self-similar groupoid actions

» Category HNN-extensions



Sierpinski Gasket




Applying the theorems
» M is the monoid of similarity contractions the Sierpinski
gasket

» R, L and T be the maps which halve the gasket and translate
it, respectively, to the right, left and top of itself

> p is rotation by 27 /3 degrees
» o is reflection in the verticle axis

» Group of isometries:
G = (p,olp’ = 0% =1, po = 0p?)

M is a left Rees monoid, X = {L, R, T}, G group of units
glx = g for every g € G, x € X, so symmetric Rees monoid
Gr ={1,0}

Monoid presentation of M:

vV v.v Y

M= (p,o,T|pP=0?=1,p0=0p’>,0T = To)



Thank you for listening



