Green's \mathcal{J} -order and the rank of tropical matrices

Marianne Johnson

St Andrews, 20th May 2011

Tropical semirings

Let $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ and define two binary operations on \mathbb{T} by $a \oplus b := \max(a, b)$, and $a \otimes b := a + b$, for all $a, b \in \mathbb{T}$ (where $a \oplus -\infty = -\infty \oplus a = a$ and $a \otimes -\infty = -\infty \otimes a = -\infty$).

- ▶ (\mathbb{T}, \oplus) is a commutative monoid with identity element $-\infty$;
- (\mathbb{T}, \otimes) is a (commutative) monoid with identity element 0;
- \blacktriangleright \otimes distributes over \oplus ;
- ▶ $-\infty$ is an absorbing element with respect to \otimes ;
- For all $a \in \mathbb{T}$ we have $a \oplus a = a$.

We say that \mathbb{T} is a (commutative) **idempotent semiring**. It is often referred to as the **max-plus** or **tropical semiring** We also define $\mathbb{FT} = (\mathbb{R}, \oplus, \otimes)$ and $\overline{\mathbb{T}} = (\mathbb{T} \cup \{\infty\}, \oplus, \otimes)$, where

$$\begin{array}{rcl} a \oplus \infty & = & \infty \oplus a = \infty \\ a \otimes \infty & = & \infty \otimes a = \begin{cases} \infty & \text{if } a \neq -\infty, \\ -\infty & \text{otherwise.} \end{cases} \end{array}$$

For the rest of the talk we will assume that $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$.

Tropical convex sets

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$. We write T^n to denote the set of all *n*-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in T$.

We extend \oplus and \leq on T to T^n componentwise:

 $x \oplus y = (x_1 \oplus y_1, \dots, x_n \oplus y_n), \quad x \leq y \text{ if and only if } x_i \leq y_i \text{ for all } i.$

and define a scaling action of T on T^n :

 $\lambda \otimes (x_1, \ldots, x_n) = (\lambda \otimes x_1, \ldots, \lambda \otimes x_n)$ for all $\lambda \in T$ and all $x \in T^n$.

A *T*-linear convex set X in T^n is a subset that is closed under \oplus and scaling. We say that a subset $V \subseteq X$ is a generating set for X if every element of X can be written as a tropical linear combination of finitely many elements of V. Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$ and let $X \subseteq T^n$ be a T-linear convex set.

There are several non-equivalent ways to define linear independence over T. We give two here:

Let $V \subseteq T^n$. We say that V is a **weakly linearly** independent set if no element of V can be written as a tropical linear combination of the others.

Let $V = \{v_k : k \in K\} \subseteq T^n$. We say that V is a **Gondran-Minoux linearly independent set** if there does not exist an equation of the form

$$\bigoplus_{i\in I}\lambda_i\otimes v_i=\bigoplus_{j\in J}\lambda_j\otimes v_j,$$

where $I, J \subseteq K, I \cap J = \emptyset$ and $\lambda_i, \lambda_j \neq -\infty$.

Example

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$.

Let $x_1 = (1, 0, -1)$, $x_2 = (2, 0, -2)$, $x_3 = (3, 0, -3)$, $x_4 = (4, 0, -4)$ and let $X \subseteq T^n$ be the convex set generated by x_1, x_2, x_3, x_4 .

It is easy to check that x_1, x_2, x_3, x_4 is a weakly linearly independent generating set for X.

However, the elements x_1, x_2, x_3, x_4 are **not** Gondran-Minoux linearly independent:

$$(3,0,-2) = -1 \otimes x_1 \oplus 0 \otimes x_3 = 0 \otimes x_2 \oplus -1 \otimes x_4.$$

In fact, it can be shown that X does not have a Gondran-Minoux linearly independent generating set.

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$.

Theorem. Every finitely generated convex set $X \subseteq T^n$ has a weakly linearly independent generating set. We call such a set a **weak basis** for X.

Moreover, any two weak bases for X are 'the same' up to scaling. In particular, they have the same cardinality. We call this the **weak dimension** of X.

Words of caution...

- ▶ It is **not** true that each element of X can be expressed uniquely in terms of the weak basis.
- ▶ There is not a corresponding theorem for Gondran-Minoux linear independence.

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$ and let X and Y be two convex sets in T^n . We say that a map $f: X \to Y$ is a **linear morphism** if

$$f(x \oplus x') = f(x) \oplus f(x'), f(\lambda \otimes x) = \lambda \otimes f(x)$$

for all $x, x' \in X$ and all $\lambda \in T$.

We say that f is a **linear embedding** if f is a one-to-one linear morphism. We say that f is a **linear surjection** if f is an onto linear morphism.

Finally, we say that convex sets X and Y are **linearly** isomorphic if there is a one-to-one and onto linear morphism from X to Y.

Tropical matrices

Consider the set $M_n(T)$ of all $n \times n$ matrices with entries in $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$. The operations \oplus and \otimes can be extended to such matrices in the usual way:

$$(A \oplus B)_{i,j} = A_{i,j} \oplus B_{i,j}, \text{ for all } A, B \in M_n(T)$$

$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^l A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(T).$$

Given a matrix $A \in M_n(T)$ we define the **row space** $R_T(A) \subseteq T^n$ to be the convex set generated by the rows of A. Similarly, we define the **column space** $C_T(A) \subseteq T^n$ to be the convex set generated by the columns of A.

Warning: The row space need **not** be linearly isomorphic to the column space.

We shall study the multiplicative semigroups $(M_n(T), \otimes)$ where $T = \mathbb{T}, \mathbb{FT}$ or $\overline{\mathbb{T}}$.

Let S be any semigroup. If S is a monoid set $S^1 = S$. Otherwise let S^1 be the monoid obtained by adjoining a new identity element 1 to S. Let $A, B \in S$.

(1)	$A \leqslant_{\mathcal{L}} B$	\Leftrightarrow	$S^1A \subseteq S^1B$
		\Leftrightarrow	$\exists P \in S^1 \text{ s.t. } A = PB.$
(2)	$A\mathcal{L}B$	\Leftrightarrow	$A \leq_{\mathcal{L}} B$ and $B \leq_{\mathcal{L}} A \Leftrightarrow S^1 A = S^1 B$.
(3)	$A \leqslant_{\mathcal{R}} B$	\Leftrightarrow	$AS^1 \subseteq BS^1$
		\Leftrightarrow	$\exists Q \in S^1 \text{ s.t. } A = BQ.$
(4)	$A\mathcal{R}B$	\Leftrightarrow	$A \leq_{\mathcal{R}} B$ and $B \leq_{\mathcal{R}} A \Leftrightarrow AS^1 = BS^1$.
(5)	$A\mathcal{H}B$	\Leftrightarrow	$A\mathcal{R}B$ and $A\mathcal{L}B$.
(6)	$A\mathcal{D}B$	\Leftrightarrow	$\exists C \in S \text{ s.t. } A\mathcal{R}C\mathcal{L}B.$
(7)	$A \leqslant_{\mathcal{J}} B$	\Leftrightarrow	$S^1 A S^1 \subseteq S^1 B S^1$
		\Leftrightarrow	$\exists P, Q \in S^1$ s.t. $A = PBQ$.
(8)	$A\mathcal{J}B$	\Leftrightarrow	$S^1 A S^1 = S^1 B S^1.$

Let K be a field and let $A, B \in M_n(K)$.

(1)	$A \leqslant_{\mathcal{L}} B$	\Leftrightarrow	row space of $A \subseteq$ row space of B .
(2)	$A\mathcal{L}B$	\Leftrightarrow	row space of $A = $ row space of B .
(3)	$A \leqslant_{\mathcal{R}} B$	\Leftrightarrow	col. space of $A \subseteq$ col. space of B .
(4)	$A\mathcal{R}B$	\Leftrightarrow	col. space of $A = \text{col.}$ space of B .
(5)	$A\mathcal{H}B$	\Leftrightarrow	row space of $A = $ row space of B and
			col. space of $A = \text{col.}$ space of B .
(6)	$A\mathcal{D}B$	\Leftrightarrow	row space of $A \cong$ row space of B
		\Leftrightarrow	col. space of $A \cong$ col. space of B
		\Leftrightarrow	$\operatorname{rank}(A) = \operatorname{rank}(B)$
(7)	$A \leqslant_{\mathcal{J}} B$	\Leftrightarrow	row space of A embeds in the row space of B .
		\Leftrightarrow	col. space of A embeds in the col. space of B
		\Leftrightarrow	$\operatorname{rank}(A) \leqslant \operatorname{rank}(B)$
(8)	$A\mathcal{J}B$	\Leftrightarrow	$A\mathcal{D}B.$

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$ and let $A, B \in M_n(T)$.

(1)	$A \leqslant_{\mathcal{L}} B$	\Leftrightarrow	row space of $A \subseteq$ row space of B .
(2)	$A\mathcal{L}B$	\Leftrightarrow	row space of $A = $ row space of B .
(3)	$A \leqslant_{\mathcal{R}} B$	\Leftrightarrow	col. space of $A \subseteq$ col. space of B .
(4)	$A\mathcal{R}B$	\Leftrightarrow	col. space of $A = \text{col.}$ space of B .
(5)	$A\mathcal{H}B$	\Leftrightarrow	row space of $A = row$ space of B and
			col. space of $A = \text{col.}$ space of B .

Mark's talk this morning:

Even though the row space $R_T(A)$ need not be linearly isomorphic to the column space $C_T(A)$ as convex sets, we still have

(6) $ADB \Leftrightarrow$ row space of $A \cong$ row space of $B \Leftrightarrow$ col. space of $A \cong$ col. space of B via metric duality.

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$.

- Is $\mathcal{D} = \mathcal{J}$?
- ► Can the \mathcal{J} -order on $M_n(T)$ be characterised in terms of linear embeddings of row/col. spaces?
- ► What is the rank of a tropical matrix and how does this relate to D and/or J?

Is $\mathcal{D} = \mathcal{J}$?

Example $A\mathcal{J}B$ but $A\mathcal{D}B$.

$$A = \begin{pmatrix} -\infty & 0 & 1 & -\infty \\ -\infty & -\infty & 1 & -\infty \\ 0 & 0 & 0 & -\infty \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}, B = \begin{pmatrix} -\infty & 0 & 1 & 1 \\ -\infty & -\infty & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}$$

Indeed, there exist matrices $P, Q, P', Q' \in M_4(\mathbb{T})$ such that A = PBQ and B = P'AQ'. However, it can be shown that the column spaces $C_{\mathbb{T}}(A)$ and $C_{\mathbb{T}}(B)$ are not linearly isomorphic:

 $C_{\mathbb{T}}(A)$ has weak dimension 3, $C_{\mathbb{T}}(B)$ has weak dimension 4.

This example can be extended to show that:

 $\mathcal{D} \neq \mathcal{J}$ in $M_n(T)$ with $T = \mathbb{T}$ or $\overline{\mathbb{T}}$ and $n \ge 4$.

However, the situation is different for $T = \mathbb{FT} \dots$

Tropical metric spaces

Consider \mathbb{FT}^n . We define \mathbb{PFT}^{n-1} by identifying two elements of \mathbb{FT}^n if one is a tropical multiple of the other. We may identify \mathbb{PFT}^{n-1} with \mathbb{R}^{n-1} via $[(x_1, \ldots, x_n)] \mapsto (x_1 - x_n, \ldots, x_{n-1} - x_n).$

We define a distance function on \mathbb{FT}^n by

 $\mathrm{d}_{\mathrm{H}}(x,y) = -(\langle x|y\rangle + \langle y|x\rangle), \text{ where } \langle a|b\rangle = \max\{\lambda \in \mathbb{FT} : \lambda \otimes a \leqslant b\}.$

It is easy to check that this metric induces the usual topology on \mathbb{R}^{n-1} .

Each finitely generated convex set $X \subseteq \mathbb{FT}^n$ induces a closed (and hence compact) subset of \mathbb{PFT}^{n-1} termed the projectivisation of X and denoted by PX.

Metric duality: Let $A \in M_n(\mathbb{FT})$. There exist mutually inverse isometries between $PR_{\mathbb{FT}}(A)$ and $PC_{\mathbb{FT}}(A)$.

Is $\mathcal{D} = \mathcal{J}$?

Theorem 1. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$. Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{D}B$. Then there is a non-surjective isometric embedding

$$f: PR_{\mathbb{FT}}(A) \to PR_{\mathbb{FT}}(A).$$

Set $X_0 = PR_{\mathbb{FT}}(A)$. Since f is not surjective and has closed image we may choose $x_0 \in X_0$ and $\varepsilon > 0$ such that $x_0 \notin f(X_0)$ and $d_{\mathrm{H}}(x_0, z) \geq \varepsilon$ for all $z \in f(X_0)$.

Now set $X_i = f^i(X_0)$ and let $x_i = f^i(x_0) \in X_i$. Since f is an isometric embedding we have that $d_H(x_i, y) \ge \varepsilon$ for all $y \in X_{i+1}$. Thus for all j > i we have $x_j \in X_j \subseteq X_{i+1}$ and hence $d_h(x_i, x_j) \ge \varepsilon$.

This contradicts the compactness of $X_0 \subseteq \mathbb{PFT}^{n-1} = \mathbb{R}^{n-1}$.

Lemma 2. Let $T = \mathbb{FT}$ or $\overline{\mathbb{T}}$. and let $A, B \in M_n(T)$. Then the following are equivalent.

- (i) $R_T(A)$ embeds linearly into $R_T(B)$;
- (ii) $C_T(B)$ surjects linearly onto $C_T(A)$;
- (iii) There exists $C \in M_n(T)$ with $A\mathcal{R}C \leq_{\mathcal{L}} B$.

Lemma 2'. Let $T = \mathbb{FT}$ or $\overline{\mathbb{T}}$. and let $A, B \in M_n(T)$. Then the following are equivalent.

- (i) $C_T(A)$ embeds linearly into $C_T(B)$;
- (ii) $R_T(B)$ surjects linearly onto $R_T(A)$;
- (iii) There exists $C \in M_n(T)$ with $A\mathcal{L}C \leq_{\mathcal{R}} B$.

Theorem 3. Let $T = \mathbb{FT}$ or $\overline{\mathbb{T}}$. and let $A, B \in M_n(T)$. Then the following are equivalent.

- (i) $A \leq_{\mathcal{J}} B;$
- (ii) There is a T-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
- (iii) There is a T-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

Theorem 4. Let $A, B \in M_n(\mathbb{T})$. Then $A \leq_{\mathcal{J}} B$ in $M_n(\mathbb{T})$ if and only if $A \leq_{\mathcal{J}} B$ in in $M_n(\overline{\mathbb{T}})$. Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$ and let $A, B \in M_n(T)$. It follows easily from Theorems 3 and 4 that

- ▶ If $R_T(A)$ embeds linearly in $R_T(B)$ then $A \leq_{\mathcal{J}} B$.
- If $C_T(A)$ embeds linearly in $C_T(B)$ then $A \leq_{\mathcal{J}} B$.

For $n \ge 4$ it can be shown that the converse to the above statements is false i.e.

- ▶ There exist matrices $A, B \in M_n(T)$ such that $A \leq_{\mathcal{J}} B$, but $R_T(A)$ does not embed in $R_T(B)$.
- ► There exist matrices $A', B' \in M_n(T)$ such that $A' \leq_{\mathcal{J}} B'$, but $C_T(A')$ does not embed in $C_T(B')$.

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$.

- ► Is $\mathcal{D} = \mathcal{J}$? For $T = \mathbb{T}$ or $\overline{\mathbb{T}}$, no. For $T = \mathbb{FT}$, yes.
- Can the *J*-order on M_n(T) be characterised in terms of linear embeddings of row/col. spaces?
 Not quite! But we can give a characterisation in terms of linear embeddings and linear surjections of row/col. spaces. (For T = FT we have D = J = mutual embedding of the row/col. spaces.)
- ▶ What is the rank of a tropical matrix and how does this relate to D and/or J?

Let K be a field. We define a function

rank : $M_n(K) \to \mathbb{N}_0$

by any of the following equivalent definitions:

 $\operatorname{rank}(A) = \operatorname{the dimension of the row space of } A$

- = the maximal number of lin. independent rows of A
- = the dimension of the col. space of A
- = the maximal number of lin. independent cols of A
- = the minimum k such that A can be factored as A = CR where C is $n \times k$ and R is $k \times n$
- = the maximum k such that A has a non-singular $k \times k$ minor.

 $= \cdots$

Let K be a field and consider rank : $M_n(K) \to \mathbb{N}_0$.

It can be shown that $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$ for all $A, B \in M_n(K)$.

Thus it is easy to see that if $A \leq_{\mathcal{J}} B$ then rank $(A) \leq \operatorname{rank}(B)$.

Moreover, suppose that $f: M_n(K) \to \mathbb{N}_0$ is any map such that f respects the \mathcal{J} -order i.e. $f(A) \leq f(B)$ whenever $A \leq_{\mathcal{J}} B$. Then it is immediate that $f(AB) \leq \min(f(A), f(B))$.

Theorem 5. Let R be a commutative semiring and let $f: M_n(R) \to \mathbb{N}_0$. Then f respects the \mathcal{J} -order if and only if

 $f(AB) \leq \min(f(A), f(B)).$

The rank of a tropical matrix

 $\det \operatorname{rank}(A)$

We define several (non-equivalent) rank functions $M_n(\mathbb{T}) \to \mathbb{N}_0$:

weak row $\operatorname{rank}(A) = \operatorname{number}$ of elements in a weak basis for the row space of A

- $GM \text{ row rank}(A) = \max a maximal number of GM linearly independent rows of A$
- weak col. $\operatorname{rank}(A) = \operatorname{number}$ of elements in a weak basis for the col. space of A
- $GM ext{ col. rank}(A) = maximal number of GM linearly independent cols of A$
 - factor rank(A) = the minimum k such that A can be factored as A = CR where C is $n \times k$ and R is $k \times n$
 - = the maximum k such that A has a $k \times k$ minor M with $|M|^+ \neq |M|^-$
- tropical rank(A) = the maximum k such that A has a $k \times k$ minor M where the max. is achieved twice in the permanent of $M_{f^{25}}$

Tropical rank-product inequalities

Let $A, B \in M_n(\mathbb{T})$. Then it is known that

Corollary 6. The GM row rank, GM col rank, factor rank, det rank and tropical rank are all \mathcal{J} -class invariants in $M_n(\mathbb{T})$.

The weak row rank and weak col. rank are **not** \mathcal{J} -class invariants, however, it follows fairly easily from Mark's talk this morning that they are \mathcal{D} -class invariants.

Let $T = \mathbb{T}$, \mathbb{FT} or $\overline{\mathbb{T}}$.

- ► Is $\mathcal{D} = \mathcal{J}$? For $T = \mathbb{T}$ or $\overline{\mathbb{T}}$, no. For $T = \mathbb{FT}$, yes.
- ► Can the J-order on M_n(T) be characterised in terms of linear embeddings of row/col. spaces? Not quite! But we can give a characterisation in terms of

linear embeddings and linear surjections of row/col. spaces.

► What is the rank of a tropical matrix and how does this relate to D and/or J?

There are several (non-equivalent) tropical analogues of the rank of a matrix, most of which turn out to be invariants of the \mathcal{J} -class (some are only invariants of the \mathcal{D} -class).