Green's \mathcal{J}-order and the rank of tropical matrices

Marianne Johnson

St Andrews, 20th May 2011

Tropical semirings

Let $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$ and define two binary operations on \mathbb{T} by $a \oplus b:=\max (a, b), \quad$ and $\quad a \otimes b:=a+b, \quad$ for all $a, b \in \mathbb{T}$
(where $a \oplus-\infty=-\infty \oplus a=a$ and $a \otimes-\infty=-\infty \otimes a=-\infty$).

- (\mathbb{T}, \oplus) is a commutative monoid with identity element $-\infty$;
- (\mathbb{T}, \otimes) is a (commutative) monoid with identity element 0 ;
- \otimes distributes over \oplus;
- $-\infty$ is an absorbing element with respect to \otimes;
- For all $a \in \mathbb{T}$ we have $a \oplus a=a$.

We say that \mathbb{T} is a (commutative) idempotent semiring.
It is often referred to as the max-plus or tropical semiring

Tropical semirings

We also define $\mathbb{F} \mathbb{T}=(\mathbb{R}, \oplus, \otimes)$ and $\overline{\mathbb{T}}=(\mathbb{T} \cup\{\infty\}, \oplus, \otimes)$, where

$$
\begin{aligned}
& a \oplus \infty=\infty \oplus a=\infty \\
& a \otimes \infty=\infty \otimes a=\left\{\begin{array}{l}
\infty \text { if } a \neq-\infty \\
-\infty \text { otherwise }
\end{array}\right.
\end{aligned}
$$

For the rest of the talk we will assume that $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$.

Tropical convex sets

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$. We write T^{n} to denote the set of all n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in T$.

We extend \oplus and \leqslant on T to T^{n} componentwise:
$x \oplus y=\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right), \quad x \leqslant y$ if and only if $x_{i} \leqslant y_{i}$ for all i. and define a scaling action of T on T^{n} :
$\lambda \otimes\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda \otimes x_{1}, \ldots, \lambda \otimes x_{n}\right)$ for all $\lambda \in T$ and all $x \in T^{n}$.

A T-linear convex set X in T^{n} is a subset that is closed under \oplus and scaling. We say that a subset $V \subseteq X$ is a generating set for X if every element of X can be written as a tropical linear combination of finitely many elements of V.

Linear independence

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$ and let $X \subseteq T^{n}$ be a T-linear convex set.
There are several non-equivalent ways to define linear independence over T. We give two here:

Let $V \subseteq T^{n}$. We say that V is a weakly linearly independent set if no element of V can be written as a tropical linear combination of the others.

Let $V=\left\{v_{k}: k \in K\right\} \subseteq T^{n}$. We say that V is a
Gondran-Minoux linearly independent set if there does not exist an equation of the form

$$
\bigoplus_{i \in I} \lambda_{i} \otimes v_{i}=\bigoplus_{j \in J} \lambda_{j} \otimes v_{j}
$$

where $I, J \subseteq K, I \cap J=\emptyset$ and $\lambda_{i}, \lambda_{j} \neq-\infty$.

Example

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$.
Let $x_{1}=(1,0,-1), x_{2}=(2,0,-2), x_{3}=(3,0,-3)$,
$x_{4}=(4,0,-4)$ and let $X \subseteq T^{n}$ be the convex set generated by $x_{1}, x_{2}, x_{3}, x_{4}$.

It is easy to check that $x_{1}, x_{2}, x_{3}, x_{4}$ is a weakly linearly independent generating set for X.

However, the elements $x_{1}, x_{2}, x_{3}, x_{4}$ are not Gondran-Minoux linearly independent:

$$
(3,0,-2)=-1 \otimes x_{1} \oplus 0 \otimes x_{3}=0 \otimes x_{2} \oplus-1 \otimes x_{4}
$$

In fact, it can be shown that X does not have a
Gondran-Minoux linearly independent generating set.

Weak basis theorem

Let $T=\mathbb{T}$, $\mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$.
Theorem. Every finitely generated convex set $X \subseteq T^{n}$ has a weakly linearly independent generating set. We call such a set a weak basis for X.
Moreover, any two weak bases for X are 'the same' up to scaling. In particular, they have the same cardinality. We call this the weak dimension of X.

Words of caution...

- It is not true that each element of X can be expressed uniquely in terms of the weak basis.
- There is not a corresponding theorem for Gondran-Minoux linear independence.

Tropical linear maps

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$ and let X and Y be two convex sets in T^{n}. We say that a map $f: X \rightarrow Y$ is a linear morphism if

$$
f\left(x \oplus x^{\prime}\right)=f(x) \oplus f\left(x^{\prime}\right), f(\lambda \otimes x)=\lambda \otimes f(x)
$$

for all $x, x^{\prime} \in X$ and all $\lambda \in T$.
We say that f is a linear embedding if f is a one-to-one linear morphism. We say that f is a linear surjection if f is an onto linear morphism.

Finally, we say that convex sets X and Y are linearly isomorphic if there is a one-to-one and onto linear morphism from X to Y.

Tropical matrices

Consider the set $M_{n}(T)$ of all $n \times n$ matrices with entries in $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$. The operations \oplus and \otimes can be extended to such matrices in the usual way:

$$
\begin{aligned}
& (A \oplus B)_{i, j}=A_{i, j} \oplus B_{i, j}, \text { for all } A, B \in M_{n}(T) \\
& (A \otimes B)_{i, j}=\bigoplus_{k=1}^{l} A_{i, k} \otimes B_{k, j}, \text { for all } A, B \in M_{n}(T)
\end{aligned}
$$

Given a matrix $A \in M_{n}(T)$ we define the row space $R_{T}(A) \subseteq T^{n}$ to be the convex set generated by the rows of A. Similarly, we define the column space $C_{T}(A) \subseteq T^{n}$ to be the convex set generated by the columns of A.

Warning: The row space need not be linearly isomorphic to the column space.

We shall study the multiplicative semigroups $\left(M_{n}(T), \otimes\right)$ where $T=\mathbb{T}, \mathbb{F T}$ or $\overline{\mathbb{T}}$.

Green's relations

Let S be any semigroup. If S is a monoid set $S^{1}=S$.
Otherwise let S^{1} be the monoid obtained by adjoining a new identity element 1 to S. Let $A, B \in S$.
(1) $A \leqslant_{\mathcal{L}} B \quad \Leftrightarrow \quad S^{1} A \subseteq S^{1} B$
$\Leftrightarrow \quad \exists P \in S^{1}$ s.t. $A=P B$.
(2) $A \mathcal{L} B \quad \Leftrightarrow \quad A \leqslant_{\mathcal{L}} B$ and $B \leqslant_{\mathcal{L}} A \Leftrightarrow S^{1} A=S^{1} B$.
(3) $A \leqslant_{\mathcal{R}} B \quad \Leftrightarrow \quad A S^{1} \subseteq B S^{1}$
$\Leftrightarrow \quad \exists Q \in S^{1}$ s.t. $A=B Q$.
(4) $A \mathcal{R} B \quad \Leftrightarrow \quad A \leqslant_{\mathcal{R}} B$ and $B \leqslant_{\mathcal{R}} A \Leftrightarrow A S^{1}=B S^{1}$.
(5) $A \mathcal{H} B \Leftrightarrow A \mathcal{R} B$ and $A \mathcal{L} B$.
(6) $A \mathcal{D} B \Leftrightarrow \exists C \in S$ s.t. $A \mathcal{R} C \mathcal{L} B$.
(7) $A \leqslant \mathcal{J} B \quad \Leftrightarrow \quad S^{1} A S^{1} \subseteq S^{1} B S^{1}$
$\Leftrightarrow \quad \exists P, Q \in S^{1}$ s.t. $A=P B Q$.
(8) $A \mathcal{J} B \quad \Leftrightarrow \quad S^{1} A S^{1}=S^{1} B S^{1}$.

Green's relations on the semigroup $M_{n}(K)$

Let K be a field and let $A, B \in M_{n}(K)$.
(1) $A \leqslant_{\mathcal{L}} B \Leftrightarrow$ row space of $A \subseteq$ row space of B.
(2) $A \mathcal{L} B \Leftrightarrow$ row space of $A=$ row space of B.
(3) $A \leqslant_{\mathcal{R}} B \Leftrightarrow$ col. space of $A \subseteq$ col. space of B.
(4) $A \mathcal{R} B \Leftrightarrow$ col. space of $A=$ col. space of B.
(5) $A \mathcal{H} B \quad \Leftrightarrow$ row space of $A=$ row space of B and col. space of $A=$ col. space of B.
(6) $A \mathcal{D} B \Leftrightarrow$ row space of $A \cong$ row space of B
$\Leftrightarrow \quad$ col. space of $A \cong$ col. space of B
$\Leftrightarrow \quad \operatorname{rank}(A)=\operatorname{rank}(B)$
(7) $A \leqslant \mathcal{J} B \quad \Leftrightarrow \quad$ row space of A embeds in the row space of B.
$\Leftrightarrow \quad$ col. space of A embeds in the col. space of B
$\Leftrightarrow \quad \operatorname{rank}(A) \leqslant \operatorname{rank}(B)$
(8) $A \mathcal{J} B \quad \Leftrightarrow \quad A \mathcal{D} B$.

Green's relations on the semigroup $M_{n}(T)$

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$ and let $A, B \in M_{n}(T)$.
(1) $A \leqslant_{\mathcal{L}} B \Leftrightarrow$ row space of $A \subseteq$ row space of B.
(2) $A \mathcal{L} B \Leftrightarrow$ row space of $A=$ row space of B.
(3) $A \leqslant_{\mathcal{R}} B \Leftrightarrow$ col. space of $A \subseteq$ col. space of B.
(4) $A \mathcal{R} B \quad \Leftrightarrow \quad$ col. space of $A=$ col. space of B.
(5) $\quad A \mathcal{H} B \quad \Leftrightarrow$ row space of $A=$ row space of B and col. space of $A=$ col. space of B.

Mark's talk this morning:
Even though the row space $R_{T}(A)$ need not be linearly isomorphic to the column space $C_{T}(A)$ as convex sets, we still have
(6) $A \mathcal{D} B \Leftrightarrow$ row space of $A \cong$ row space of B
\Leftrightarrow col. space of $A \cong$ col. space of B
via metric duality.

Questions

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$.

- Is $\mathcal{D}=\mathcal{J}$?
- Can the \mathcal{J}-order on $M_{n}(T)$ be characterised in terms of linear embeddings of row/col. spaces?
- What is the rank of a tropical matrix and how does this relate to \mathcal{D} and/or \mathcal{J} ?

Is $\mathcal{D}=\mathcal{J}$?

Example $A \mathcal{J} B$ but $A \mathscr{D} B$.
$A=\left(\begin{array}{cccc}-\infty & 0 & 1 & -\infty \\ -\infty & -\infty & 1 & -\infty \\ 0 & 0 & 0 & -\infty \\ -\infty & -\infty & -\infty & -\infty\end{array}\right), B=\left(\begin{array}{cccc}-\infty & 0 & 1 & 1 \\ -\infty & -\infty & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -\infty & -\infty & -\infty & -\infty\end{array}\right)$
Indeed, there exist matrices $P, Q, P^{\prime}, Q^{\prime} \in M_{4}(\mathbb{T})$ such that $A=P B Q$ and $B=P^{\prime} A Q^{\prime}$. However, it can be shown that the column spaces $C_{\mathbb{T}}(A)$ and $C_{\mathbb{T}}(B)$ are not linearly isomorphic:
$C_{\mathbb{T}}(A)$ has weak dimension 3, $C_{\mathbb{T}}(B)$ has weak dimension 4.

This example can be extended to show that:

$$
\mathcal{D} \neq \mathcal{J} \text { in } M_{n}(T) \text { with } T=\mathbb{T} \text { or } \overline{\mathbb{T}} \text { and } n \geqslant 4
$$

However, the situation is different for $T=\mathbb{F} \mathbb{T} \ldots$

Tropical metric spaces

Consider $\mathbb{F} \mathbb{T}^{n}$. We define $\mathbb{P P} \mathbb{T}^{n-1}$ by identifying two elements of $\mathbb{F} \mathbb{T}^{n}$ if one is a tropical multiple of the other.
We may identify $\mathbb{P F} \mathbb{T}^{n-1}$ with \mathbb{R}^{n-1} via
$\left[\left(x_{1}, \ldots, x_{n}\right)\right] \mapsto\left(x_{1}-x_{n}, \ldots, x_{n-1}-x_{n}\right)$.
We define a distance function on $\mathbb{F} \mathbb{T}^{n}$ by $\mathrm{d}_{\mathrm{H}}(x, y)=-(\langle x \mid y\rangle+\langle y \mid x\rangle)$, where $\langle a \mid b\rangle=\max \{\lambda \in \mathbb{F} \mathbb{T}: \lambda \otimes a \leqslant b\}$.

It is easy to check that this metric induces the usual topology on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq \mathbb{F}^{n}$ induces a closed (and hence compact) subset of $\mathbb{P F T}^{n-1}$ termed the projectivisation of X and denoted by $P X$.

Metric duality: Let $A \in M_{n}(\mathbb{F} \mathbb{T})$. There exist mutually inverse isometries between $P R_{\mathbb{F T}}(A)$ and $P C_{\mathbb{F T}}(A)$.

Is $\mathcal{D}=\mathcal{J}$?

Theorem 1. $\mathcal{D}=\mathcal{J}$ in $M_{n}(\mathbb{F} \mathbb{T})$.
Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \not \supset B$.
Then there is a non-surjective isometric embedding

$$
f: P R_{\mathbb{F T}}(A) \rightarrow P R_{\mathbb{F T}}(A)
$$

Set $X_{0}=P R_{\mathbb{F T}}(A)$. Since f is not surjective and has closed image we may choose $x_{0} \in X_{0}$ and $\varepsilon>0$ such that $x_{0} \notin f\left(X_{0}\right)$ and $\mathrm{d}_{\mathrm{H}}\left(x_{0}, z\right) \geqslant \varepsilon$ for all $z \in f\left(X_{0}\right)$.

Now set $X_{i}=f^{i}\left(X_{0}\right)$ and let $x_{i}=f^{i}\left(x_{0}\right) \in X_{i}$.
Since f is an isometric embedding we have that $\mathrm{d}_{\mathrm{H}}\left(x_{i}, y\right) \geqslant \varepsilon$ for all $y \in X_{i+1}$.
Thus for all $j>i$ we have $x_{j} \in X_{j} \subseteq X_{i+1}$ and hence $\mathrm{d}_{\mathrm{h}}\left(x_{i}, x_{j}\right) \geqslant \varepsilon$.
This contradicts the compactness of $X_{0} \subseteq \mathbb{P} \mathbb{F} \mathbb{T}^{n-1}=\mathbb{R}^{n-1}$.

Embeddings and surjections of row/col. spaces

Lemma 2. Let $T=\mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$. and let $A, B \in M_{n}(T)$. Then the following are equivalent.
(i) $R_{T}(A)$ embeds linearly into $R_{T}(B)$;
(ii) $C_{T}(B)$ surjects linearly onto $C_{T}(A)$;
(iii) There exists $C \in M_{n}(T)$ with $A \mathcal{R} C \leqslant_{\mathcal{L}} B$.

Lemma 2'. Let $T=\mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$. and let $A, B \in M_{n}(T)$. Then the following are equivalent.
(i) $C_{T}(A)$ embeds linearly into $C_{T}(B)$;
(ii) $R_{T}(B)$ surjects linearly onto $R_{T}(A)$;
(iii) There exists $C \in M_{n}(T)$ with $A \mathcal{L} C \leqslant_{\mathcal{R}} B$.

Green's \mathcal{J}-order on $M_{n}(T)$

Theorem 3. Let $T=\mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$. and let $A, B \in M_{n}(T)$. Then the following are equivalent.
(i) $A \leqslant_{\mathcal{J}} B$;
(ii) There is a T-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
(iii) There is a T-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

Theorem 4. Let $A, B \in M_{n}(\mathbb{T})$. Then $A \leqslant_{\mathcal{J}} B$ in $M_{n}(\mathbb{T})$ if and only if $A \leqslant_{\mathcal{J}} B$ in in $M_{n}(\overline{\mathbb{T}})$.

Green's \mathcal{J}-order on $M_{n}(T)$ and embeddings

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$ and let $A, B \in M_{n}(T)$. It follows easily from Theorems 3 and 4 that

- If $R_{T}(A)$ embeds linearly in $R_{T}(B)$ then $A \leqslant \mathcal{J} B$.
- If $C_{T}(A)$ embeds linearly in $C_{T}(B)$ then $A \leqslant \mathcal{J} B$.

For $n \geqslant 4$ it can be shown that the converse to the above statements is false i.e.

- There exist matrices $A, B \in M_{n}(T)$ such that $A \leqslant_{\mathcal{J}} B$, but $R_{T}(A)$ does not embed in $R_{T}(B)$.
- There exist matrices $A^{\prime}, B^{\prime} \in M_{n}(T)$ such that $A^{\prime} \leqslant \mathcal{J} B^{\prime}$, but $C_{T}\left(A^{\prime}\right)$ does not embed in $C_{T}\left(B^{\prime}\right)$.

So far...

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$.

- Is $\mathcal{D}=\mathcal{J}$?

For $T=\mathbb{T}$ or $\overline{\mathbb{T}}$, no. For $T=\mathbb{F} \mathbb{T}$, yes.

- Can the \mathcal{J}-order on $M_{n}(T)$ be characterised in terms of linear embeddings of row/col. spaces?
Not quite! But we can give a characterisation in terms of linear embeddings and linear surjections of row/col. spaces. (For $T=\mathbb{F} \mathbb{T}$ we have $\mathcal{D}=\mathcal{J}=$ mutual embedding of the row/col. spaces.)
- What is the rank of a tropical matrix and how does this relate to \mathcal{D} and/or \mathcal{J} ?

The rank of a matrix in $M_{n}(K)$

Let K be a field. We define a function

$$
\operatorname{rank}: M_{n}(K) \rightarrow \mathbb{N}_{0}
$$

by any of the following equivalent definitions:
$\operatorname{rank}(A)=$ the dimension of the row space of A
$=$ the maximal number of lin. independent rows of A
$=$ the dimension of the col. space of A
$=$ the maximal number of lin. independent cols of A
$=$ the minimum k such that A can be factored as $A=C R$ where C is $n \times k$ and R is $k \times n$
$=$ the maximum k such that A has a non-singular $k \times k$ minor.
$=\cdots$

Green's \mathcal{J}-order and the rank product inequality

Let K be a field and consider rank : $M_{n}(K) \rightarrow \mathbb{N}_{0}$.
It can be shown that $\operatorname{rank}(A B) \leqslant \min (\operatorname{rank}(A), \operatorname{rank}(B))$ for all $A, B \in M_{n}(K)$.

Thus it is easy to see that if $A \leqslant_{\mathcal{J}} B$ then $\operatorname{rank}(A) \leqslant \operatorname{rank}(B)$.
Moreover, suppose that $f: M_{n}(K) \rightarrow \mathbb{N}_{0}$ is any map such that f respects the \mathcal{J}-order i.e. $f(A) \leqslant f(B)$ whenever $A \leqslant \mathcal{J} B$.
Then it is immediate that $f(A B) \leqslant \min (f(A), f(B))$.
Theorem 5. Let R be a commutative semiring and let $f: M_{n}(R) \rightarrow \mathbb{N}_{0}$. Then f respects the \mathcal{J}-order if and only if

$$
f(A B) \leqslant \min (f(A), f(B))
$$

The rank of a tropical matrix

We define several (non-equivalent) rank functions $M_{n}(\mathbb{T}) \rightarrow \mathbb{N}_{0}$: weak row $\operatorname{rank}(A)=$ number of elements in a weak basis for the row space of A
GM row $\operatorname{rank}(A)=$ maximal number of GM linearly independent rows of A
weak col. $\operatorname{rank}(A)=$ number of elements in a weak basis for the col. space of A
GM col. $\operatorname{rank}(A)=$ maximal number of GM linearly independent cols of A
factor $\operatorname{rank}(A)=$ the minimum k such that A can be factored as $A=C R$ where C is $n \times k$ and R is $k \times n$
det $\operatorname{rank}(A)=$ the maximum k such that A has a $k \times k$ minor M with $|M|^{+} \neq|M|^{-}$
tropical $\operatorname{rank}(A)=$ the maximum k such that A has a $k \times k$ minor M where the max. is achieved twice in the permanent of $M_{23 ;} 25$

Tropical rank-product inequalities

Let $A, B \in M_{n}(\mathbb{T})$. Then it is known that
GM row $\operatorname{rank}(A B) \leqslant \min (\mathrm{GM}$ row $\operatorname{rank}(A), \mathrm{GM}$ row $\operatorname{rank}(B))$ GM col $\operatorname{rank}(A B) \leqslant \min (\mathrm{GM} \operatorname{col} \operatorname{rank}(A), \mathrm{GM} \operatorname{col} \operatorname{rank}(B))$ factor $\operatorname{rank}(A B) \leqslant \min ($ factor $\operatorname{rank}(A)$, factor $\operatorname{rank}(B))$ det $\operatorname{rank}(A B) \leqslant \min (\operatorname{det} \operatorname{rank}(A), \operatorname{det} \operatorname{rank}(B))$ tropical $\operatorname{rank}(A B) \leqslant \min (\operatorname{tropical} \operatorname{rank}(A), \operatorname{tropical} \operatorname{rank}(B))$

Corollary 6. The GM row rank, GM col rank, factor rank, det rank and tropical rank are all \mathcal{J}-class invariants in $M_{n}(\mathbb{T})$.

The weak row rank and weak col. rank are not \mathcal{J}-class invariants, however, it follows fairly easily from Mark's talk this morning that they are \mathcal{D}-class invariants.

Summary

Let $T=\mathbb{T}, \mathbb{F} \mathbb{T}$ or $\overline{\mathbb{T}}$.

- Is $\mathcal{D}=\mathcal{J}$?

For $T=\mathbb{T}$ or $\overline{\mathbb{T}}$, no. For $T=\mathbb{F} \mathbb{T}$, yes.

- Can the \mathcal{J}-order on $M_{n}(T)$ be characterised in terms of linear embeddings of row/col. spaces?
Not quite! But we can give a characterisation in terms of linear embeddings and linear surjections of row/col. spaces.
- What is the rank of a tropical matrix and how does this relate to \mathcal{D} and/or \mathcal{J} ?
There are several (non-equivalent) tropical analogues of the rank of a matrix, most of which turn out to be invariants of the \mathcal{J}-class (some are only invariants of the \mathcal{D}-class).

