An Inverse Monoid Approach to Thompson's Group V and Generalisations

John Fountain

19 May 2011
NBSAN St Andrews

Properties

1. V contains every finite group
2. V is simple
3. V is finitely presented
4. V has type $F P_{\infty}$
5. V has solvable word problem
6. V has solvable conjugacy problem
7. V has a subgroup isomorphic to $F_{2} \times F_{2}$
8. The generalised word problem for V is undecidable

Right ideals of A^{*}

- $A=\left\{a_{1}, \ldots, a_{k}\right\} ; u, v \in A^{*} . u$ is a prefix of v if $v \in u A^{*}$.
- Prefix code P over $A: P \subseteq A^{*}$ and $u A^{*} \cap v A^{*}=\emptyset \forall u, v \in P$.
- P is maximal if for a prefix code Q over A,

$$
P \subseteq Q \Rightarrow P=Q
$$

- If R a right ideal of A^{*}, then
(i) $R=P A^{*}$ for a uniquely determined prefix code P;
(ii) P is the unique minimal set of generators for R.
- R is essential if $R \cap I \neq \emptyset$ for every right ideal I of A^{*}.
- $R=P A^{*}$ is essential if and only if P is a maximal prefix code.

Thompson-Higman Groups $V_{k, 1}$

- $R_{f}^{e}\left(A^{*}\right):=$ set of all A^{*}-isomorphisms between finitely generated essential right ideals of A^{*}.
- It is an inverse submonoid of $\mathscr{I}_{A^{*}}$.
- It is an F-inverse monoid, i.e., every σ-class contains a maximum element.
- $V_{k, 1}:=R_{f}^{e}\left(A^{*}\right) / \sigma$.

Note An A^{*}-isomorphism $\varphi: P_{1} A^{*} \rightarrow P_{2} A^{*}\left(P_{1}, P_{2}\right.$ prefix codes) restricts to a bijection from P_{1} to P_{2}.

Generalisation I

C is a right LCM monoid if C is left cancellative and for $a, b \in C, a C \cap b C=\emptyset$ or is principal.

Artin monoids (in particular, free monoids), Garside monoids.
A projective right ideal of C is a disjoint union of principal right ideals. If

$$
P=a_{1} C \sqcup \cdots \sqcup a_{t} C
$$

is a projective right ideal, say $\left\{a_{1}, \ldots, a_{t}\right\}$ is a basis for P. Assumption C has finitely generated essential projective right ideals. Holds if C is a finitely generated monoid.
$R_{f p}^{e}(C):=$ set of all C-isomorphisms between finitely generated essential projective right ideals of C. It is an inverse submonoid of \mathscr{I}_{C}.

What about $R_{f p}^{e}(C) / \sigma$?

Generalisation II

C is still a right LCM monoid.

- If C is right Ore and cancellative, then $R_{f p}^{e}(C) / \sigma$ is the group of right fractions of C.
- If C is a left Rees monoid with finitely generated free part, then $C \cong A^{*} \bowtie G$ (see next slide) where $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and G is an appropriate group.

$$
R_{f p}^{e}(C) / \sigma \cong V_{k}(G) \text { (introduced by Nekrashevych). }
$$

- If $C=A^{*} \times \cdots \times A^{*}$ (n factors), then $R_{f p}^{e}(C) / \sigma \cong n V_{k, 1}$ (introduced by Brin).
- Brown-Stein groups???

Left Rees Monoids

A left cancellative monoid C is a left Rees monoid if all its right ideals are projective, and each principal right ideal is contained in only finitely many principal right ideals.
G, C monoids. Actions: G on $C:(g, c) \mapsto g \cdot c ; C$ on $G:\left.(g, c) \mapsto g\right|_{c}$. On $C \times G$ define

$$
(c, g)(d, h)=\left(c(g \cdot d),\left.g\right|_{d} h\right)
$$

With appropriate conditions on the actions, get a monoid $C \bowtie G$, the Zappa-Szép product of C and G.

Theorem (Lawson).
A monoid M is a left Rees monoid if and only if $M \cong A^{*} \bowtie G$ for some set A and group G.

In this case, the action of G on A^{*} is a self-similar action, i.e., $\forall g \in G, a \in A, \exists$ unique $b \in A, h \in G$ such that
$g \cdot(a w)=b(h \cdot w)$ for all $w \in A^{*} .\left(b=g \cdot a\right.$ and $\left.h=\left.g\right|_{a}.\right)$

Alternative view of $R_{f p}^{e}(C)$: Inverse Hulls

C left cancellative. For $a \in C$, the mapping λ_{a} defined by

$$
\lambda_{a}(c)=a c
$$

is one-one with domain $C . I H(C)=\operatorname{Inv}\left\langle\lambda_{a}: a \in C\right\rangle$ is the inverse hull of C.

$$
I H^{0}(C)= \begin{cases}I H(C) & \text { if } 0 \in I H(C) \\ I H(C) \cup\{0\} & \text { otherwise }\end{cases}
$$

Theorem (McAlister; also Nivat/Perrot)

The following are equivalent:

1. $I H^{0}(C)$ is 0 -bsimple;
2. every non-zero element of $I H^{0}(C)$ can be written as $\lambda_{a} \lambda_{b}^{-1}$ for some $a, b \in C$;
3. the domain of each non-zero element of $\operatorname{IH}^{0}(C)$ is a principal right ideal;
4. C is a right LCM monoid.

Alternative view of $R_{f p}^{e}(C)$: Orthogonal Completions 1

 S inverse semigroup with zero. $a, b \in S$ are orthogonal $(a \perp b)$ if$$
a^{-1} b=0=a b^{-1}
$$

Clearly, $a \perp b$ iff $a a^{-1} \perp b b^{-1}$ and $a^{-1} a \perp b^{-1} b$. $A \subseteq S$ is orthogonal if $a \perp b$ for all distinct $a, b \in A$.
S is orthogonally complete if it satisfies:

1. $\left\{a_{1}, \ldots, a_{n}\right\}$ orthogonal implies $a_{1} \vee \cdots \vee a_{n}$ exists (natural po), and
2. multiplication distributes over joins of finite orthogonal sets.

Examples

1. Symmetric inverse monoids.
2. $I H^{0}(C)$ where C is a right Ore and right LCM monoid.

Alternative view of $R_{f p}^{e}(C)$: Orthogonal Completions 2

S inverse semigroup with zero.

$$
D(S)=\{A \subseteq S: 0 \in A,|A|<\infty, A \text { is orthogonal }\}
$$

Theorem (Lawson)

1. $D(S)$ is an inverse subsemigroup of $P(S)$; it is a monoid if S is a monoid.
2. $\iota: S \rightarrow D(S)$ given by $a \mapsto\{0, a\}$ embeds S in $D(S)$
3. $D(S)$ is orthogonally complete.
4. If $\theta: S \rightarrow T$ is a homomorphism to an orthogonally complete inverse semigroup T, then there is a unique join preserving homomorphism $\varphi: D(S) \rightarrow T$ such that $\varphi \iota=\theta$.

Say $D(S)$ is the orthogonal completion of S.

Alternative view of $R_{f p}^{e}(C)$: Orthogonal Completions 3

C is a right LCM monoid. $R_{f}(C)$ (resp. $R_{f p}(C)$) is the set of C-isomorphisms between finitely generated (resp. finitely generated projective) right ideals of C.
$R_{f p}(C) \subseteq R_{f}(C)$ are inverse submonoids of the the symmetric inverse monoid on C and $R_{f p}^{e}(C) \subseteq R_{f p}(C)$.

The polycyclic monoid P_{n} on $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is $I H^{0}\left(A^{*}\right)$ and a presentation for it is:

$$
\left.\left\langle A \cup A^{-1}\right| a a^{-1}=1 ; a b^{-1}=0 \text { if } a \neq b\right\rangle .
$$

Theorem (Lawson)

$$
D\left(P_{n}\right) \cong R_{f}\left(A^{*}\right)=R_{f p}\left(A^{*}\right)
$$

Alternative view of $R_{f p}^{e}(C)$: Orthogonal Completions 4

Recall that

$$
I H^{0}(C)=\left\{\lambda_{c} \lambda_{d}^{-1}: c, d \in C\right\} \cup\{0\}
$$

Product:
$\left(\lambda_{a} \lambda_{b}^{-1}\right)\left(\lambda_{c} \lambda_{d}^{-1}\right)= \begin{cases}\lambda_{a s} \lambda_{d t}^{-1} & \text { if } b C \cap c C=m C \text { with } m=b s=c t \\ 0 & \text { if } b C \cap c C=\emptyset .\end{cases}$
$\left\{\lambda_{a_{1}} \lambda_{b_{1}}^{-1}, \ldots, \lambda_{a_{k}} \lambda_{b_{k}}^{-1}\right\} \cup\{0\}$ is orthogonal
iff $\left\{a_{1}, \ldots, a_{k}\right\}$ and $\left\{b_{1}, \ldots, b_{k}\right\}$ are bases for projective right ideals of C
iff for all i, j with $i \neq j$ we have $a_{i} C \cap a_{j} C=\emptyset$ and $b_{i} C \cap b_{j} C=\emptyset$.

Alternative view of $R_{f p}^{e}(C)$: Orthogonal Completions 5

Theorem
$D\left(I H^{0}(C)\right) \cong R_{f p}(C)$.
Idea of proof: Let $A \in D\left(I H^{0}(C)\right)$, say
$A=\left\{\lambda_{a_{1}} \lambda_{b_{1}}^{-1}, \ldots, \lambda_{a_{k}} \lambda_{b_{k}}^{-1}\right\} \cup\{0\}$.
Then $I=\left\{a_{1}, \ldots, a_{k}\right\} C$ and $J=\left\{b_{1}, \ldots, b_{k}\right\} C$ are projective right ideals and

$$
\theta_{A}: J \rightarrow I \text { given by }\left(b_{i} c\right) \theta_{A}=a_{i} c
$$

is a C-isomorphism. Now define

$$
\theta: D\left(I H^{0}(C)\right) \rightarrow R_{f p}(C) \text { by } \theta(A)=\theta_{A}
$$

and verify that θ is an isomorphism.

Alternative view of $R_{f p}^{e}(C)$: Orthogonal Completions 6

S is an inverse monoid with zero.
$S^{e}:=\{a \in S: S a$ and $a S$ are essential $\}$. S^{e} is an inverse submonoid of S called the essential part of S.

An idempotent e is essential if $e \in S^{e}$. This is true if and only if $e f \neq 0$ for all non-zero idempotents f of S. $a \in S^{e}$ if and only if $a a^{-1}$ and $a^{-1} a$ are essential idempotents

The isomorphism θ restricts to an isomorphism

$$
D^{e}\left(I H^{0}(C)\right) \cong R_{f p}^{e}(C)
$$

Right Ore Right LCM Monoids

Let C be right Ore and right LCM. Then every projective right ideal is principal. (Two principal right ideals cannot be disjoint).

So, all orthogonal subsets of $I H^{0}(C)$ have the form $\left\{\lambda_{a} \lambda_{b}^{-1}, 0\right\}$; hence the embedding of $I H^{0}(C)$ into $D\left(I H^{0}(C)\right)$ is surjective.

Every nonzero idempotent of $I H^{0}(C)$ is essential. So

$$
D^{e}\left(I H^{0}(C)\right)=I H(C)
$$

Well known that the group of right fractions of C is isomorphic to $I H(C) / \sigma$.

More on Zappa-Szép Products I

Let C be a right LCM monoid with trivial group of units, and G be a group. Suppose we have actions so that we can form $D=C \bowtie G$. Then

1. D is left cancellative;
2. D is right LCM;
3. the group of units of D is $\{(1, g): g \in G\}$;
4. the partially ordered set of principal right ideals of D is order-isomorphic to the partially ordered set of principal right ideals of C.

More on Zappa-Szép Products II

Remember that for any right LCM monoid B,

$$
\begin{gathered}
I H^{0}(B)=\left\{\lambda_{a} \lambda_{b}^{-1}: a, b \in B\right\} \\
\lambda_{a} \lambda_{b}^{-1}=\lambda_{c} \lambda_{d}^{-1} \Leftrightarrow \exists \text { unit } u \in B \text { such that } a u=c, b u=d .
\end{gathered}
$$

Write elements of $I H^{0}(B)$ as \sim-equivalence classes $[a, b]$ where

$$
(a, b) \sim(c, d) \Leftrightarrow \exists \text { unit } u \in B \text { such that } a u=c, b u=d
$$

Now consider $I H^{0}(D)$ where $D=C \bowtie G$. Elements are:

$$
[(a, g),(b, h)]=\left[\left(a, g h^{-1}\right),(b, 1)\right]
$$

so can represent elements by triples $(a, g, b) \in C \times G \times C$.

More on Zappa-Szép Products III: Orthogonal Subsets

The following are equivalent:

1. $X=\left\{\left(a_{1}, g_{1}, b_{1}\right), \ldots,\left(a_{t}, g_{t}, b_{t}\right)\right\} \cup\{0\}$ is an orthogonal subset of $I H^{0}(D)$;
2. $\bar{X}=\left\{\lambda_{a_{1}} \lambda_{b_{1}}^{-1}, \ldots, \lambda_{a_{t}} \lambda_{b_{t}}^{-1}\right\} \cup\{0\}$ is an orthogonal subset of $I H^{0}(C)$;
3. $A=\left\{a_{1}, \ldots, a_{t}\right\}$ and $B=\left\{b_{1}, \ldots, b_{t}\right\}$ are bases for projective right ideals of C.

Consequently,

$$
\begin{aligned}
D^{e}\left(I H^{0}(D)\right) & =\left\{X: \bar{X} \in D^{e}\left(I H^{0}(C)\right)\right\} \\
& =\{X: A, B \text { are bases for essential projective right ideals }\}
\end{aligned}
$$

