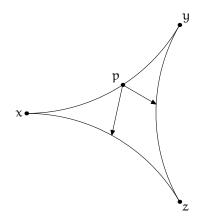
Hyperbolic and word-hyperbolic semigroups

Alan J. Cain

University of Porto

Alan J. Cain Hyperbolic and word-hyperbolic semigroups



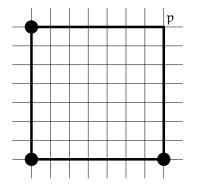
The space is δ -hyperbolic if for any geodesic triangle \triangle_{xyz} ,

 $p\in [xy]\implies d(p,[yz]\cup [zx])\leqslant \delta.$

A group G generated by X is hyperbolic if the Cayley graph $\Gamma(G,X)$ is a hyperbolic metric space.

• Trees are 0-hyperbolic, so free groups are hyperbolic.

\mathbb{Z}^2 is not hyperbolic



The point p can be very far from the other sides of geodesic triangles like this.

Let (S, d_S) , (T, d_T) be metric spaces.

A map $\varphi:S \to T$ is a quasi-isometry if there are $\mathfrak{m}, c, k \geqslant 0$ such that

$$\frac{1}{\mathfrak{m}}d_{S}(x,y)-c\leqslant d_{T}(x\varphi,y\varphi)\leqslant \mathfrak{m} \ d_{S}(x,y)+c;$$

and such that every point in T is at most k from some point in $S\varphi.$

Hyperbolicity is preserved under quasi-isometries.

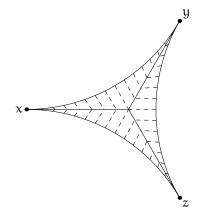
If G is generated by both X and Y then $\Gamma(G, X)$ and $\Gamma(G, Y)$ are quasi-isometric. Hence hyperbolicity is independent of the choice of generating set.

- Admitting a finite Dehn's presentation.
- Having linear isoperimetric inequality.
- Gilman's linguistic characterization: G is hyperbolic if there is a regular language L ⊆ X* such that L maps onto G and such that

$$\mathcal{M}(\mathcal{L}) = \{ \mathfrak{u} \#_1 \nu \#_2 w^{\mathsf{rev}} : \mathfrak{u}, \nu, w \in \mathcal{L}, \mathfrak{uv} =_{\mathsf{G}} w \}$$

is context-free.

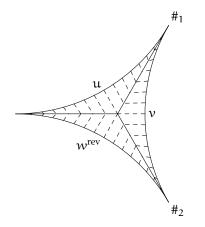
Thin triangles



For any geodesic triangle \triangle_{xyz} , there is a unique map $f: \triangle_{xyz} \rightarrow T_{xyz}$, where T_{xyz} is a tripod connecting x, y, z, such that f restricts to an isometry on edge of \triangle_{xyz} .

The space is δ -hyperbolic if for any geodesic triangle \triangle_{xyz} , the preimage of any point of T_{xyz} has diameter at most δ .

Context-free grammar describing thin triangles



Language of geodesics is regular (Cannon).

Non-terminals of CFG record word differences of elements mapping to the same element of the tripod. A semigroup S generated by X is hyperbolic if $\Gamma(S, X)$ is hyperbolic.

A semigroup S generated by X is word-hyperbolic if there is a regular language $L \subseteq X^+$ such that

 $M(L) = \{u\#_1 v \#_2 w^{\text{rev}} : u, v, w \in L, uv =_S w\}$

is context-free. The pair (L, M(L)) is a word-hyperbolic structure for S.

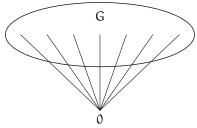
These are *not* equivalent for semigroups.

Proposition (Duncan & Gilman 2004)

S is word-hyperbolic \iff S⁰ is word-hyperbolic.

Let G be a non-hyperbolic group.

- G⁰ is not word-hyperbolic.
- G⁰ is hyperbolic:



A f.g. semigroup has finite geometric type if there is a bound on the number of in-edges at any vertex of its Cayley graph.

Theorem (C.)

Let S be a monoid of finite geometric type and let T be a finite Rees index submonoid of S. Then the natural embedding map $T \hookrightarrow S$ is a quasi-isometry.

Does hyperbolicity + some extra geometric condition imply word-hyperbolicity?

Example (C., Gray, Malheiro)

There exists a monoid that has the following properties:

- Quasi-isometric to a tree (and so hyperbolic).
- Right-cancellative.
- Insoluble word problem (and so not word-hyperbolic).

Question

Does hyperbolicity + left-cancellativity or cancellativity imply word-hyperbolicity?

Theorem (Cassaigne & Silva 2009)

Any monoid presented by a confluent finite special rewriting system is hyperbolic and word-hyperbolic.

(Special rewriting system: RHS of any rule is ε .)

Theorem (C. 2010)

Any monoid presented by a confluent regular monadic rewriting system is hyperbolic and word-hyperbolic.

(Monadic rewriting system: RHS of any rule is ε or a single letter.)

Let (A, \mathcal{R}) be a confluent monadic rewriting system presenting \mathcal{M} .

Identify \boldsymbol{M} with the language of normal form words.

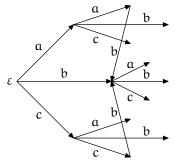
2 types of edge in $\Gamma(M, A)$:

$$\bigcirc \ \mathfrak{u} \stackrel{\mathfrak{a}}{\longrightarrow} \mathfrak{u}\mathfrak{a};$$

C

u
$$\xrightarrow{a} v$$
, where $ua \Rightarrow^+ v$.

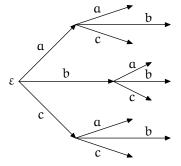
Let Σ be the subgraph with only type 1 edges. Σ is a subgraph of $\Gamma(A^*, A)$ and thus a tree.



$$\begin{split} & A = \{a, b, c\}, \\ & \mathcal{R} = \{a^2b \rightarrow b, c^2b \rightarrow b\}. \end{split}$$

Graph Γ

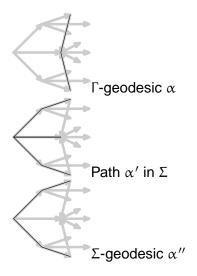
Idea of proof

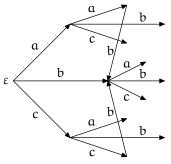


$$A = \{a, b, c\},\$$
$$\mathcal{R} = \{a^2b \to b, c^2b \to b\}.$$

Graph Σ

Idea of proof





Graph Γ

But every vertex on α' (and thus α'') is at most n + 1 from some vertex on α . And every vertex on α is at most 3n + 1 from some vertex on α'' .

Idea of proof



Suppose $\mathfrak{u} \xrightarrow{\mathfrak{a}} \nu$ is an edge not in Σ . Then $\mathfrak{u}\mathfrak{a} \Rightarrow^* \nu$. So ν is a prefix of \mathfrak{u} and $||\mathfrak{u}| - |\nu|| \leq \mathfrak{n}$. So $d_{\Sigma}(\mathfrak{u}, \nu) \leq \mathfrak{n}$.

So if there is a path of length k joining u and v in $\Gamma(S, A)$, there is a path of length kn joining them in Σ .

So $d_{\Gamma}(\mathfrak{u}, \nu) \leqslant d_{\Sigma}(\mathfrak{u}, \nu) \leqslant nd_{\Gamma}(\mathfrak{u}, \nu)$.

So the embedding map $\Sigma \hookrightarrow \Gamma(S, A)$ is a quasi-isometry.

Proposition (C. & Maltcev 2011)

Any monoid presented by a confluent context-free monadic rewriting system (A, \mathcal{R}) admits a word-hyperbolic structure $(A^*, M(A^*))$.

• The language of words of the form

$$a_1 \cdots a_k \#_1 a_{k+1} \cdots a_n \#_2 a_n \cdots a_1$$

is defined by a context-free grammar Γ .

- Extend Γ to allow derivations $a_i \Rightarrow^*_{\Gamma} w$, whenever $w \Rightarrow^*_{\mathcal{R}} a_i$.
- This grammar defines $M(A^*)$.

Every hyperbolic group G admits a word-hyperbolic structure with uniqueness (L, M(L)) where L maps bijectively onto G. Duncan & Gilman (2004) asked whether a word-hyperbolic semigroup always admits a word-hyperbolic structure with uniqueness.

Example (C. & Maltcev 2011)

The monoid presented by $\langle A \mid \mathfrak{R} \rangle$, where $A = \{a, b, c, d\}$ and

$$\mathcal{R} = \{ (ab^{\alpha}c^{\alpha}d, \varepsilon) : \alpha \in \mathbb{N} \cup \{0\} \}$$

is word-hyperbolic but does not admit a regular language of unique normal forms.

Question

If a semigroup admits a word-hyperbolic structure (L, M(L)) where M(L) is a deterministic context-free language, must it admit a word-hyperbolic structure with uniqueness?

(Word-hyperbolic groups always admit a word-hyperbolic structure where $\mathcal{M}(L)$ is deterministic.)

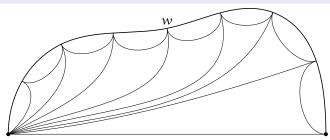
Let (L.M(L) be a word-hyperbolic structure for a monoid M. Let $e \in L$ represent 1_M .

Given two words $w, w' \in A^*$, compute $u, u' \in L$ with $w =_M u$ and $w' =_M u'$, then check whether $u\#_1e\#_2(u')^{rev} \in M(L)$.

Checking membership of a CFL takes cubic time.

Lemma (Hoffmann, Kuske, Otto, Thomas)

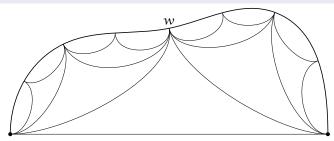
Given non-empty $p, q \in L$, one can compute $r \in L$ satisfying $pq =_M r$ with $|r| \leq c(|p| + |q|)$ in time $O((|p| + |q|)^5)$.



For each $a \in A$, there is $s_a \in L$ with $s_a =_M a$. Let $w = w_1 \cdots w_n$. Compute $u_{i+1} = u_i s_{w_{i+1}}$. Then $|u_i| \leq d^i$ for some d. So this takes exponential time.

Lemma (Hoffmann, Kuske, Otto, Thomas)

Given non-empty $p, q \in L$, one can compute $r \in L$ satisfying $pq =_M r$ with $|r| \leq c(|p| + |q|)$ in time $O((|p| + |q|)^5)$.



Let $w = w_1 \cdots w_n$. Multiply adjacent elements. There are log n iterations. Length increase of c each iteration. So overall length increase is $c^{\log n} = n^{\log c}$. So this takes polynomial time.