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Graphs

• A graph consists of vertices and edges

• It can be directed or undirected

• It can contain loops

• Usually one considers only finite graphs 



Algebra

• An algebra consists of a set A and one or more 
operations

• An operation is a function whose one or more 
arguments are from A and whose value is in A

• For example, addition or multiplication



Groupoid

• In this talk, every algebra has exactly one 
operation, and this operation is binary

• Usually the operation is called multiplication

• An algebra with one binary operation is called 
a groupoid



Semigroup

• A semigroup is a groupoid whose operation is 
associative

• The operation is called associative if 
(ab)c=a(bc)



Group

• A group is a semigroup in which there is a 
neutral element and every element has an 
inverse

• Say, the neutral element is 1

• Then 1g=g1=g for every g

• And for every g there is g-1 such that 
g g-1 = g-1 g=1



Types of algebras we consider

groupoids

semigroups

groups



graphs
semigroups
(or groups)

A correspondence



graphs
semigroups
(or groups)

A ‘natural’ correspondence

a ‘natural’ class 
of graphs

a ‘natural’ class 
of (semi)groups



A minor of a graph

• Graphs are assumed to be undirected.

• A graph H is called a minor of a graph G if H is 
isomorphic to a graph that can be obtained by 
edge contractions from a subgraph of G.

• In other words, delete some edges (and, 
perhaps, isolated vertices) in G, and then 
contract some paths.



Minor-closed classes of graphs

• A minor-closed class of graphs is a class of 
graphs that is closed under taking minors.

• Minor-closed classes of graphs are described 
by the famous theorem of Neil Robertson and 
Paul D. Seymour.



A variety of algebras

• A variety (pseudovariety) is a class of algebras 
which is closed with under taking subalgebras, 
factor-algebras and direct products (direct 
products of two algebras).

• Varieties are described by the famous 
theorem of Garrett Birkhoff, also known as the 
HSP theorem.

• Pseudovarieties also have several useful 
descriptions



graphs
semigroups
(or groups)

For example (if it was possible)

a minor-closed 
class of graphs

a variety of 
(semi)groups



graphs semigroups

For example (it is possible, in a way)

forests
aperiodic

semigroups



Graphs-to-algebra constructions
(in no particular order)

• Graph algebras

• Graph semigroups

• Graph groups

• Path semigroups

• Endomorphism semigroups

• Commutative graph semigroups

• Inverse graph semigroups

• Jackson-Volkov semigroups



Endomorphisms of graphs

• It is usually assumed that we consider 
undirected graphs

• An endomorphism of a graph is a 
transformation on the set of vertices which 
maps each pair of adjacent vertices to 
adjacent vertices

• If you have not decided yet, you need to 
decide if your graph has or does not have 
loops.



Endomorphism semigroups

• Endomorphisms of a graph form a semigroup

• Endomorphism semigroups of graphs are a 
standard object of research, like semigroups of 
endomorphisms of any other objects in 
discrete mathematics



Endomorphism semigroups

• Positive:

– All endomorphism semigroups are finite, which is 
convenient

• Negative:

– It’s impossible to reconstruct a graph from its 
endomorphism semigroup, even approximately



Graph algebras

• The word ‘algebra’ here stands for ‘groupoid’

• We introduce a binary operation on the set of 
vertices (with an added 0)

• The definition of multiplication uv is:
• uv=u if there is an edge from u to v

• uv=0 otherwise



Graph algebras

• Graph algebras are used to build ‘awkward’ 
examples of algebras in algebraic research

• For example, ‘usually’ the variety generated 
by a graph algebra cannot be defined by 
finitely many identities.



Graph algebras

• Positive:

– The graph algebra of a graph reflect the structure 
of the graph

• Negative:

– Algebraic properties of graph algebras are 
inconvenient



Graph semigroups

• Graphs are assumed to be undirected.

• We generate a semigroup whose set of 
generators is the set of vertices

• The defining relations are uv=vu for each pair 
of adjacent vertices u,v.

• (Or, in old papers, uv=vu if u and v are not
adjacent)



Graph semigroups

• Graph semigroups are an area of research 
within semigroup theory.

– They are a generalisation of free semigroups

– Many word problem results have been proved



Graph semigroups

• Positive:

– The graph semigroup of a graph reflect the 
structure of the graph

• Negative:

– Graph semigroups are infinite

– Graph semigroups don’t seem sufficiently versatile

– This is why they are also known as free partially 
commutative semigroups



Graph groups

• This is a ‘group version’ of graph semigroups

• Graphs are assumed to be undirected.

• We generate a group whose set of generators 
is the set of vertices

• The defining relations are uv=vu for each pair 
of adjacent vertices u,v.



Graph groups

• Graph groups are used to build interesting 
examples of groups 

• (which are similar to braid groups) 



Graph groups

• Positive:

– The graph group of a graph reflect the structure of 
the graph

• Negative:

– Graph groups are infinite

– Graph groups don’t seem sufficiently versatile



Graph (semi)groups

• Negative

– A smaller or larger (semi)group can correspond to 
a smaller or larger graph

– Indeed,

• Adding (removing) vertices makes the semigroup larger 
(smaller)

• Adding (removing) edges makes the semigroup smaller 
(larger)



Commutative graph semigroups

• Graphs are assumed to be undirected.

• We generate a commutative semigroup whose 
set of generators is the set of vertices

• The defining relations are u=v1+...+vk for each 
vertex u, where v1,...,vk are all vertices 
adjacent to u.



Commutative graph semigroups

• This is a new interesting object in algebra

• Commutative graph semigroups have been 
applied to the study of rings and modules (this 
is two types of algebras)



Commutative graph semigroups

• Positive:
– The commutative graph semigroup of a graph reflect 

the structure of the graph (to some extent)

– It’s a convenient object to work with

• Negative:
– Commutative graph semigroups are infinite

• Although maybe we can use coefficients reduced modulo 2?

– Commutative graph semigroups don’t seem 
sufficiently versatile
• They all are commutative



Inverse graph semigroups

• There is a construction which puts an inverse 
semigroup in correspondence with a graph

• I don’t know much about this construction

• Inverse graph semigroups are used to study 
C*-algebras and category-theory 
generalisations of graphs



Path semigroups

• We generate a semigroup whose set of 
generators is the set of vertices and edges 
(with an added 0)

• The defining relations are 

– u(u,v)=(u,v)v=(u,v), where (u,v) is an edge from u 
to v 

– uv=0, if u and v are two distinct vertices



Path semigroups

• Path semigroups are used in algebra, for 
example, in group theory and in the study of 
C*-algebras.



Path semigroups

• Positive:

– The path semigroup of a graph reflect the 
structure of the graph

– We can consider finite path semigroups

• Negative:

– Path semigroups don’t seem sufficiently versatile

• ‘Most’ products are 0



Jackson-Volkov semigroups

• We consider a semigroup whose elements are 
pairs of vertices (with an added 0)

• We define the product (u,v)(x,y)

– It is (u,y) if there is an edge (v,x)

– It is 0, otherwise

• Also, we add a unary operation of reversing a 
pair



Jackson-Volkov semigroups

• There is a correspondence between universal 
Horn classes of graphs and varieties of 
Jackson-Volkov semigroups



Jackson-Volkov semigroups

• Positive:

– The Jackson-Volkov semigroup of a graph reflects 
the structure of the graph

– Jackson-Volkov semigroups are finite

• Negative:

– Jackson-Volkov semigroups don’t seem sufficiently 
versatile

• They are 0-simple



My construction

• Consider the semigroup generated by the 
following transformations on the set of 
vertices

– For each edge (u,v), a transformation mapping u 
to v and leaving everything else where it is

• Let us call this semigroup the transformation 
graph semigroup, and denote by TS(G), where 
G is the graph



Transformation graph semigroups

• Positive:

– The transformation semigroup of a graph reflects 
the structure of the graph

– Transformation graph semigroups are finite

– Transformation graph semigroups are sufficiently 
different from one another

• For example, for any identity, one can present a graph 
whose transformation semigroup does not satisfy the 
identity.



Transformation graph semigroups

• Properties of a graph are naturally reflected in 
the properties of its transformation semigroup



Path length

• There is a path of length k in G if and only if 
there is an element s of the index k in TS(G) 
(that is, s, s2, ..., sk are pairwise distinct)

• There is a cycle of length k in G if and only if 
there is a group element s of the order k-1 in 
TS(G) 
(that is, s=sk)



Corollaries

• G is a forest if and only if TS(G) is aperiodic.

• G is bipartite if and only if every group 
element of TS(G) has an odd order.

• G is a disjoint union of stars if and only if the 
identity x3=x4 holds in TS(G)



Connectivity

• G is connected if and only if TS(G) is 
subdirectly indecomposable

• Therefore, G is a tree if and only if TS(G) is 
aperiodic and subdirectly indecomposable.



Towards minors

• (Conjecture) Every transformation graph 
subsemigroup of TS(G) corresponds to a minor 
of G, and vice versa, every minor of G 
corresponds to a transformation graph 
subsemigroup of TS(G).

• By ‘transformation graph subsemigroup’ we 
mean a subsemigroup which is isomorphic to 
a transformation graph semigroup



Abstract characterisation

• At the moment, I am trying to develop an 
abstract characterisation of semigroups
isomorphic to transformation graph 
semigroups. 


