Some results on almost factorizable semigroups

Mária B. Szendrei

Bolyai Institute University of Szeged

NBSAN 2010, York 24 Nov, 2010

Mária B. Szendrei Some results on almost factorizable semigroups

→ E → < E →</p>

< 🗇 🕨

- S inverse semigroup
- E semilattice of idempotents of S
- σ least group congruence on ${\it S}$

Definition *S* is *E*-unitary $\stackrel{\text{def}}{\longleftrightarrow} e \le a \text{ implies } a \in E \text{ for every } e \in E, a \in S,$ $\stackrel{\text{def}}{\longleftrightarrow} \text{Ker } \sigma = E,$ $\stackrel{\text{def}}{\longleftrightarrow} a(\mathcal{R} \cap \sigma) b \text{ implies } a = b \text{ for every } a, b \in S$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

→ Ξ → < Ξ →</p>

ъ

- M inverse monoid with identity 1
- E semilattice of idempotents of M
- U group of units of M (i.e. the \mathcal{H} -class of 1)

・聞き ・ヨキ ・ヨト

→ E > < E >

< 🗇 ▶

ъ

An analogue for inverse semigroups?

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

- S inverse semigroup
- E semilattice of idempotents of S
- P(S) monoid of partial 1-1 right translations of S
- H non-empty subset of S

・ 同 ト ・ ヨ ト ・ ヨ ト

C(S) — set of all permissible subsets of S

Fact

C(S) forms an inverse monoid with respect to usual set product, and it is isomorphic to P(S).

UP(S) — group of units of PS UC(S) — group of units of C(S)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lawson ('94)

Definition

S is almost factorizable

$$\stackrel{\text{def}}{\Longrightarrow} \quad \text{for every } a \in S, \text{ there exists } \rho \in UP(S) \text{ with} \\ a \in E\rho \\ \stackrel{\text{def}}{\Longrightarrow} \quad \text{for every } a \in S, \text{ there exists } H \in UC(S) \text{ with} \\ a \in H \end{aligned}$$

Results

Let M be an inverse monoid.

- M is almost factorizable iff it is factorizable.
- If M is factorizable then M \ U is an almost factorizable inverse semigroup, and each almost factorizable inverse semigroup is of this form.

ヘロト ヘアト ヘビト ヘビト

ъ

Lawson ('94)

Definition

S is almost factorizable

$$\stackrel{\text{def}}{\Longrightarrow} \quad \text{for every } a \in S, \text{ there exists } \rho \in UP(S) \text{ with} \\ a \in E\rho \\ \stackrel{\text{def}}{\Longrightarrow} \quad \text{for every } a \in S, \text{ there exists } H \in UC(S) \text{ with} \\ a \in H \end{aligned}$$

Results

Let M be an inverse monoid.

- M is almost factorizable iff it is factorizable.
- If M is factorizable then M \ U is an almost factorizable inverse semigroup, and each almost factorizable inverse semigroup is of this form.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Lawson ('94) (c.f. also McAlister ('76))

(画) (目) (日)

ъ

Result

An inverse semigroup is E-unitary and almost factorizable iff it is isomorphic to a semidirect product of a semilattice by a group.

Result

An inverse semigroup is E-unitary and almost factorizable iff it is isomorphic to a semidirect product of a semilattice by a group.

・ 回 ト ・ ヨ ト ・ ヨ ト

- S orthodox semigroup
- E band of idempotents of S
- σ least group congruence on ${\it S}$

Definition S is E-unitary $\stackrel{\text{def}}{\iff} e \leq a \text{ implies } a \in E \text{ for every } e \in E, a \in S,$ $\stackrel{\text{def}}{\iff} \text{Ker } \sigma = E,$ $\stackrel{\text{def}}{\iff} a(\mathcal{H} \cap \sigma) b \text{ implies } a = b \text{ for every } a, b \in S$

・聞き ・ヨキ ・ヨト

Takizawa ('79), Sz. ('80) Billhardt ('98)

∃ > < ∃ >

э

▶ < Ξ >

ъ

- M orthodox monoid with identity 1
- E band of idempotents of M
- U group of units of M (i.e. the \mathcal{H} -class of 1)

Fact

M is factorizable iff it is an (id.sep.) homomorphic image of a semidirect product of a band monoid by a group.

- M orthodox monoid with identity 1
- E band of idempotents of M
- U group of units of M (i.e. the \mathcal{H} -class of 1)

Fact

M is factorizable iff it is an (id.sep.) homomorphic image of a semidirect product of a band monoid by a group.

- S orthodox semigroup
- E band of idempotents of S
- $U\Omega(S)$ group of units of translational hull of S

Fact

If S is inverse then $U\Omega(S)$ is isomorphic to UP(S).

Hartmann ('07, PhD Thesis)

S is almost factorizable

 $\stackrel{\text{def}}{\Longrightarrow} \text{ for every } a \in S \text{, there exists } (\lambda, \rho) \in U\Omega(S) \text{ with} \\ a \in E\rho$

- S orthodox semigroup
- E band of idempotents of S
- $U\Omega(S)$ group of units of translational hull of S

Fact

If S is inverse then $U\Omega(S)$ is isomorphic to UP(S).

Hartmann ('07, PhD Thesis)

$\begin{array}{l} \hline \textbf{Definition} \\ S \text{ is almost factorizable} \\ \stackrel{\text{def}}{\longleftrightarrow} & \text{for every } a \in S \text{, there exists } (\lambda, \rho) \in U\Omega(S) \text{ with} \\ a \in E\rho \\ \stackrel{\text{def}}{\longleftrightarrow} & \text{for every } a \in S \text{, there exists } (\lambda, \rho) \in U\Omega(S) \text{ with} \\ a \in \lambda E \end{array}$

Results

Let M be an orthodox monoid.

- M is almost factorizable iff it is factorizable.
- If M is factorizable then M \ U is an almost factorizable orthodox semigroup, and each almost factorizable orthodox semigroup is of this form.

Results

Let M be an orthodox monoid.

- M is almost factorizable iff it is factorizable.
- If M is factorizable then M \ U is an almost factorizable orthodox semigroup, and each almost factorizable orthodox semigroup is of this form.

Summary of the orthodox case

Fact

An orthodox semigroup isomorphic to a semidirect product of a band by a group is E-unitary and almost factorizable.

Question. Does the converse hold?

(本間) (本語) (本語)

Summary of the orthodox case

Fact

An orthodox semigroup isomorphic to a semidirect product of a band by a group is E-unitary and almost factorizable.

Question. Does the converse hold?

ヨト イヨト

Summary of the orthodox case

Fact

An orthodox semigroup isomorphic to a semidirect product of a band by a group is *E*-unitary and almost factorizable.

Question. Does the converse hold?

.≣⇒

Hartmann, Sz. (subm.)

Answer. No.

Example

 $S = B \rtimes \mathbb{Z}_4$ — semidirect product with B a left normal band

- κ idempotent pure congruence on *S* s.t.
 - $\circ~$ the greatest group homomorphic image of S/κ is \mathbb{Z}_2
 - $\circ~S/\kappa$ is not isomorphic to a semidirect product of a band by a group

ヘロン 人間 とくほ とくほ とう

structure semilattice of B:

프 🕨 🗆 프

S — orthodox semigroups

 γ — least inverse semigroup congruence on ${\it S}$

$$\chi : U\Omega(S) \to U\Omega(S/\gamma), \ (\lambda, \rho)\chi = (\lambda_{\gamma}, \rho_{\gamma})$$

where e.g. $\lambda_{\gamma}(s\gamma) = (\lambda s)\gamma \ (s \in S)$
is a group homomorphism

S is *E*-unitary and almost factorizable $\implies \chi$ is surjective $\implies U\Omega(S)$ is an extension of Ker χ by $U\Omega(S/\gamma)$

Theorem

S is isomorphic to a semidirect product of a band by a group iff *S* is *E*-unitary, almost factorizable, and the group extension determined by χ is splitting.

S — orthodox semigroups

 γ — least inverse semigroup congruence on ${\it S}$

$$\chi \colon U\Omega(S) o U\Omega(S/\gamma), \ (\lambda, \rho)\chi = (\lambda_{\gamma}, \rho_{\gamma})$$

where e.g. $\lambda_{\gamma}(s\gamma) = (\lambda s)\gamma \ (s \in S)$

is a group homomorphism

S is E-unitary and almost factorizable $\implies \chi$ is surjective $\implies U\Omega(S)$ is an extension of Ker χ by $U\Omega(S/\gamma)$

Theorem

S is isomorphic to a semidirect product of a band by a group iff *S* is *E*-unitary, almost factorizable, and the group extension determined by χ is splitting.

S — orthodox semigroups

 γ — least inverse semigroup congruence on ${\it S}$

$$\chi \colon U\Omega(\mathcal{S}) o U\Omega(\mathcal{S}/\gamma), \ (\lambda, \rho)\chi = (\lambda_{\gamma}, \rho_{\gamma})$$

where e.g. $\lambda_{\gamma}(s\gamma) = (\lambda s)\gamma \ (s \in S)$

is a group homomorphism

S is E-unitary and almost factorizable $\implies \chi$ is surjective $\implies U\Omega(S)$ is an extension of Ker χ by $U\Omega(S/\gamma)$

Theorem

S is isomorphic to a semidirect product of a band by a group iff *S* is *E*-unitary, almost factorizable, and the group extension determined by χ is splitting.

 \mathcal{PT}_{X} — monoid of all partial transformations on X \mathcal{I}_X — monoid of all partial 1-1 transformations on X ⁺ — unary operation: $\alpha^+ \stackrel{\text{def}}{=} \operatorname{id}_{\operatorname{dom} \alpha}$ (d. idempotents)

 \leq — natural partial order

ヘロン ヘアン ヘビン ヘビン

 \mathcal{PT}_X — monoid of all partial transformations on X \mathcal{I}_X — monoid of all partial 1-1 transformations on X+ — unary operation: $\alpha^+ \stackrel{\text{def}}{=} \operatorname{id}_{\operatorname{dom}\alpha}$ (d. idempotents) < — natural partial order

Definition

$$\begin{split} S &= (S; \cdot, +) \text{ is a left restriction semigroup} \\ &\stackrel{\text{def}}{\longleftrightarrow} \quad S \text{ is isomorphic to a } (2, 1) \text{-subalgebra of} \\ & \mathcal{PT}_X = (\mathcal{PT}_X; \cdot, +) \\ S &= (S; \cdot, +) \text{ is a left ample} \\ &\stackrel{\text{def}}{\longleftrightarrow} \quad S \text{ is isomorphic to a } (2, 1) \text{-subalgebra of} \\ & \mathcal{I}_X = (\mathcal{I}_X; \cdot, +) \end{split}$$

く 同 と く ヨ と く ヨ と

- S left restriction semigroup
- $E \stackrel{\text{def}}{=} \{a^+ : a \in S\}$ semilattice of d. idempotents of S
- σ least (monoid) congruence on ${\it S}$ where ${\it E}$ is within a class

in particular:

- S left ample semigroup
- E semilattice of idempotents of S
- σ least right cancellative (monoid) congruence on S

Definition *S* is proper $\stackrel{\text{def}}{\iff} a^+ = b^+ \text{ and } a \sigma b \text{ imply } a = b \text{ for every } a, b \in S$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

S — left restriction semigroup

- $E \stackrel{\text{def}}{=} \{a^+ : a \in S\}$ semilattice of d. idempotents of S
- σ least (monoid) congruence on S where E is within a class

in particular:

- S left ample semigroup
- E semilattice of idempotents of S
- σ least right cancellative (monoid) congruence on ${\it S}$

・ロット (雪) () () () ()

S — left restriction semigroup

- $E \stackrel{\text{def}}{=} \{a^+ : a \in S\}$ semilattice of d. idempotents of S
- σ least (monoid) congruence on ${\it S}$ where ${\it E}$ is within a class

in particular:

- S left ample semigroup
- E semilattice of idempotents of S
- σ least right cancellative (monoid) congruence on ${\it S}$

DefinitionS is proper $\stackrel{\text{def}}{\iff}$ $a^+ = b^+$ and $a \sigma b$ imply a = b for every $a, b \in S$

ъ

э

Y — semilatticeM — monoid with identity 1M acts on Y on the right s.t. for any $a \in M, x, y \in Y$

$$\begin{array}{rcl} x^a = y^a & \Longrightarrow & x = y \\ x \leq y^a & \Longrightarrow & (\exists z \in Y) \; x = z^a \end{array}$$

Definition

$$W(M, Y) \stackrel{\text{def}}{=} \{(a, y^a) : a \in M, y \in Y\} \le M \ltimes Y \text{ with} \\ (a, y^a)^+ \stackrel{\text{def}}{=} (1, y)$$

Facts

W(M, Y) is a proper left restriction semigroup.

W(M, Y) is a proper left ample semigroup iff M is right cancellative.

Y — semilattice M — monoid with identity 1 M acts on Y on the right s.t. for any $a \in M, x, y \in Y$

$$\begin{array}{rcl} x^a = y^a & \Longrightarrow & x = y \\ x \leq y^a & \Longrightarrow & (\exists z \in Y) \; x = z^a \end{array}$$

Definition

$$W(M, Y) \stackrel{\text{def}}{=} \{(a, y^a) : a \in M, y \in Y\} \le M \ltimes Y \text{ with}$$

 $(a, y^a)^+ \stackrel{\text{def}}{=} (1, y)$

Facts

- **W**(M, Y) is a proper left restriction semigroup.
- W(M, Y) is a proper left ample semigroup iff M is right cancellative.

Y — semilattice M — monoid with identity 1 M acts on Y on the right s.t. for any $a \in M, x, y \in Y$

$$\begin{array}{rcl} x^a = y^a & \Longrightarrow & x = y \\ x \leq y^a & \Longrightarrow & (\exists z \in Y) \; x = z^a \end{array}$$

Definition

$$W(M, Y) \stackrel{\text{def}}{=} \{(a, y^a) : a \in M, y \in Y\} \le M \ltimes Y \text{ with}$$

 $(a, y^a)^+ \stackrel{\text{def}}{=} (1, y)$

Facts

- W(M, Y) is a proper left restriction semigroup.
- W(M, Y) is a proper left ample semigroup iff M is right cancellative.

- M left ample monoid with identity 1
- E semilattice of idempotents of M
- $R \stackrel{\text{def}}{=} \{r \in M : r^+ = 1\}$, a right cancellative submonoid in M

El Qallali ('81)

ヘロン ヘアン ヘビン ヘビン

- M left ample monoid with identity 1
- E semilattice of idempotents of M
- $R \stackrel{\text{def}}{=} \{r \in M : r^+ = 1\}$, a right cancellative submonoid in M

El Qallali ('81)

El Qallali, Fountain ('05)

く 同 ト く ヨ ト く ヨ ト

- S left ample semigroup
- H non-empty subset of S

Definition

H is a permissible set

$$\stackrel{\text{def}}{\Longrightarrow} H \text{ is an order ideal with respect to } \leq, \text{ and} \\ a^+b = b^+a \text{ for every } a, b \in H$$

→ Ξ → < Ξ →</p>

æ

< 🗇 🕨

Summary of the left ample/restriction case

Dual of a left ample/restriction semigroup:

 $S = (S; \cdot, *)$ — right ample/restriction semigroup

Definition

S = (S; ·, +, *) is an ample/restriction semigroup
 ^{def}→ (S; ·, +) is left ample/restriction,
 (S; ·, *) is right ample/restriction, and
 E = {a⁺ : a ∈ S} = {a^{*} : a ∈ S}

 S = (S; ·, +, *) is proper
 ^{def}→ both (S; +) and (S; *) are proper
 ^{def}→ both (S; +) and (S; *) are proper

⁼act

 $W(M, Y) \leq M \ltimes Y$, and so $(a, y^a)^* \stackrel{\text{def}}{=} (1, y^a)$ makes W(M, Y) a proper restriction semigroup.

ヘロト ヘワト ヘビト ヘビト

Dual of a left ample/restriction semigroup:

 $S = (S; \cdot, *)$ — right ample/restriction semigroup

Definition

S = (S; ·,⁺, *) is an ample/restriction semigroup
def (S; ·,⁺) is left ample/restriction, (S; ·, *) is right ample/restriction, and E = {a⁺ : a ∈ S} = {a^{*} : a ∈ S}
S = (S; ·,⁺, *) is proper
def both (S; ·,⁺) and (S; ·, *) are proper

⁼act

 $W(M, Y) \leq M \ltimes Y$, and so $(a, y^a)^* \stackrel{\text{def}}{=} (1, y^a)$ makes W(M, Y) a proper restriction semigroup.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Dual of a left ample/restriction semigroup:

 $S = (S; \cdot, *)$ — right ample/restriction semigroup

Definition

S = (S; ·,⁺, *) is an ample/restriction semigroup
def (S; ·,⁺) is left ample/restriction, (S; ·, *) is right ample/restriction, and E = {a⁺ : a ∈ S} = {a^{*} : a ∈ S}
S = (S; ·,⁺, *) is proper
def both (S; ·,⁺) and (S; ·, *) are proper

Fact

 $W(M, Y) \leq M \ltimes Y$, and so $(a, y^a)^* \stackrel{\text{def}}{=} (1, y^a)$ makes W(M, Y) a proper restriction semigroup.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Gomes, Sz. ('07)

- S restriction semigroup
- E semilattice of d. idempotents of S
- H non-empty subset of S

Definition

H is a permissible set

$$\stackrel{\text{det}}{\longleftrightarrow} H \text{ is an order ideal with respect to } \leq, \text{ and}$$
$$\stackrel{a^+b = b^+a \text{ for every } a, b \in H, \text{ and}$$
$$ab^* = ba^* \text{ for every } a, b \in H$$

C(S) — restriction monoid of all permissible subsets of S, with identity E

ヘロト ヘアト ヘビト ヘビト

Gomes, Sz. ('07)

- S restriction semigroup
- E semilattice of d. idempotents of S
- H non-empty subset of S

Definition

H is a permissible set

$$\stackrel{\text{det}}{\longleftrightarrow} H \text{ is an order ideal with respect to } \leq, \text{ and}$$
$$\stackrel{a^+b = b^+a \text{ for every } a, b \in H, \text{ and}$$
$$ab^* = ba^* \text{ for every } a, b \in H$$

C(S) — restriction monoid of all permissible subsets of *S*, with identity *E*

$$\mathit{RC}(S) \stackrel{\mathrm{def}}{=} \{ \mathit{H} \in \mathit{C}(S) : \mathit{H}^+ = \mathit{E} \}, ext{ a submonoid in } \mathit{C}(S)$$

Definition

S is almost left factorizable

 $\stackrel{\mathrm{def}}{\longleftrightarrow}$ for every $a \in S$, there exists $H \in RC(S)$ with $a \in H$

Results

- S is almost left factorizable iff it is any/d. id. sep. homomorphic image of a W-product of a semilattice by a monoid.
- S is isomorphic to a W-product of a semilattice by a monoid iff it proper and almost left factorizable.

ヘロト ヘワト ヘビト ヘビト

$$\mathit{RC}(S) \stackrel{\mathrm{def}}{=} \{\mathit{H} \in \mathit{C}(S) : \mathit{H}^+ = \mathit{E}\}, ext{ a submonoid in } \mathit{C}(S)$$

Definition S is almost left factorizable $\stackrel{\text{def}}{\longleftrightarrow}$ for every $a \in S$, there exists $H \in RC(S)$ with $a \in H$

Results

- S is almost left factorizable iff it is any/d. id. sep. homomorphic image of a W-product of a semilattice by a monoid.
- S is isomorphic to a W-product of a semilattice by a monoid iff it proper and almost left factorizable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fountain, Gomes, Gould ('09)

프 🖌 🛪 프 🕨

ъ

Left restriction semigroups revisited

프 🕨 🗆 프