Varieties of *P*-restriction semigroups.

Peter Jones Marquette University

NBSAN, at The University of York November 24, 2010

Background on left restriction semigroups, aka weakly left *E*-ample semigroups.

One view: consider the semigroup of partial transformations \mathcal{PT}_X on a set as a unary semigroup under the additional unary operation +, where $\alpha^+ = 1_{\text{dom}\alpha}$. The left restriction semigroups are the abstractions of the (unary) semigroups of partial transformations. Notice that the set E of partial identity maps is a semilattice that is a proper subset of the set of idempotents of \mathcal{PT}_X . An alternative view is that S is a semigroup with a designated subsemilattice E of idempotents, S is weakly left E-adequate, $\widetilde{\mathcal{R}}_E$ is a left congruence and the left ample condition $ae = (ae)^+ a$ is satisfied for all $e \in E$.

From yet another point of view — and the one of this talk — the left restriction semigroups are the unary semigroups $(S, \cdot, +)$ that are induced from inverse semigroups $(S, \cdot, -1)$ by setting

$$a^+ = aa^{-1}$$

From whichever origin, as unary semigroups they are defined by the identities [Cockett and Lack, 2002; Gould "notes" 2009]:

$$x^+x = x, \quad x^+x^+ = x^+, \quad (xy)^+ = (xy^+)^+,$$

 $x^+y^+ = y^+x^+, \quad xy^+ = (xy)^+x.$

The right restriction semigroups are defined dually. An inverse semigroup induces a right restriction semigroup by setting $a^* = a^{-1}a$.

A restriction semigroup is both a left and right restriction semigroup, with respect to a common set E.

We regard it as a 'bi-unary' semigroup $(S, \cdot, +, *)$, the operations being attached to a common subsemilattice E.

So every inverse semigroup induces a restriction semigroup by setting $a^+ = aa^{-1}$ and $a^* = a^{-1}a$.

At the opposite extreme, every monoid $(S, \cdot, 1)$ induces a 'reduced' restriction semigroup by setting

$$a^+ = 1 = a^*.$$

Generalizing restriction semigroups.

First of all, we want to retain 'adequacy'. In the past, this was approached by allowing E to be a band instead of a semilattice.

Rather than using E itself as the focus, we consider semigroups obtained by inducing one or both of the operations $a^+ = aa^{-1}$ and $a^* = a^{-1}a$ from a 'nice' class of semigroups endowed with an inversion operation.

Now E is just the set of 'projections', so we prefer to denote it P_S .

A regular *-semigroup [Nordahl and Scheiblich, 1978] is a semigroup $(S, \cdot, -1)$ with a regular involution:

$$xx^{-1}x = x, \quad x^{-1}xx^{-1} = x^{-1}$$

 $(x^{-1})^{-1} = x, \quad (xy)^{-1} = y^{-1}x^{-1}.$

Under the signature $(\cdot, -1)$, regular *-semigroups form a variety, denoted **RS**. Well-known subvarieties include groups, **G**, inverse semigroups, **I**, and orthodox *-semigroups, **O**.

On any regular *-semigroup, unary operations $a^+ = aa^{-1}$, $a^* = a^{-1}a$ are induced, as above. Now $P_S = \{a^+ : a \in S\} = \{a^* : a \in S\}$ is the usual set of projections, in the standard terminology. The induced unary semigroup $(S, \cdot, +)$ satisfies:

 $x^+x = x, \quad x^+x^+ = x^+, \quad (xy)^+ = (xy^+)^+,$ $(x^+y)^+ = x^+y^+x^+.$

The last identity is purely a consequence of the involutory property.

The induced unary semigroup $(S, \cdot, *)$ satisfies the dual identities and shares the same set of projections.

The bi-unary semigroup $(S, \cdot, +, *)$ further satisfies the 'generalized left and right ample' identities

$$(xy)^+x = xy^+x^*, \quad x(yx)^* = x^+y^*x.$$

Again, these are consequences of the involutory property only.

A *P*-restriction semigroup is a bi-unary semigroup $(S, \cdot, +, *)$ that satisfies the identities in the previous slide. Then (it turns out that) the restriction semigroups are the *P*-restriction semigroups for which the set P_S of projections forms a semilattice. In general, P_S is not a subsemigroup of *S*, but can be characterized abstractly as a 'projection algebra'.

With every projection algebra P is associated a 'generalized Munn semigroup' T_P , which is a fundamental regular *-semigroup. **Theorem** For any *P*-restriction semigroup *S*, there is a *P*-separating $(^+,^*)$ -representation θ of *S* onto a full subsemigroup of the regular *-semigroup T_{P_S} .

Theorem For any *P*-restriction semigroup S, the subsemigroup $\langle P_S \rangle$ generated by the projections is a regular *-semigroup, which we call the *P*-core, C_S , of *S*. If *S* is induced from a regular *-semigroup, this is the usual (idempotent-generated) core.

We can consider *P*-restriction semigroups under the signature $(\cdot, +, *)$. Let **PR** denote the variety of *P*-restriction semigroups.

Since every regular *-semigroup $(S, \cdot, -1)$ induces the *P*-restriction semigroup $(S, \cdot^+, *)$, every variety V of regular *-semigroups induces a variety $\mathcal{P}(V)$ of *P*-restriction semigroups.

 $\mathcal{P}(\mathbf{V})$ comprises those that $(^+,^*)$ -*divide* some member of \mathbf{V} .

Question: is $\mathcal{P}(RS) = PR$?

That is, do the identities on the previous slide characterize the bi-unary semigroups induced from regular *-semigroups?

More generally, given V, what is $\mathcal{P}(V)$?

It is known (implicitly, at least) that the variety I of inverse semigroups induces the variety R of restriction semigroups; the variety G of groups induces the variety of reduced restriction semigroups ($x^+ = x^* = 1$).

Note that I and R comprise respectively the regular *-semigroups and the P-restriction semigroups whose P-core is a semilattice.

We can recognize, or define, many interesting varieties in this way.

For any variety V of regular \ast -semigroups:

- let CV comprise the regular *-semigroups whose cores belong to V;
- let $\mathbf{P}C\mathbf{V}$ comprise the *P*-restriction semigroups whose cores belong to \mathbf{V} .

If V = T (trivial semigroups), then CT comprises the groups and PCT comprises the reduced restriction semigroups.

If V = SL (semilattices), then CSL comprises inverse semigroups and PCSL comprises the restriction semigroups.

If V = B (*-bands), then CB comprises orthodox *-semigroups and PCB defines the orthodox P-restriction semigroups.

And if V = RS, then CV = RS and PCV = PR.

The original question 'is $\mathcal{P}(\mathbf{RS}) = \mathbf{PR}$?' and all the examples given above fall within the scope of:

Question: When does the equality $\mathcal{P}(C\mathbf{V}) = \mathbf{P}C\mathbf{V}$ hold?

Equivalently: when does every P-restriction semigroup whose P-core belongs to \mathbf{V} divide a regular *-semigroup with the same property? **Theorem (Dirty trick)** Any *P*-fundamental member of PCV actually *embeds* in a member of CV.

Proof. For such a semigroup S, the 'Munn' representation $\theta: S \longrightarrow T_{P_S}$ is faithful.

Further, it maps the *P*-core of *S* upon the core of the regular *-semigroup T_{P_S} . Hence the latter also belongs to CV.

Corollary. If the (relatively) free *P*-restriction semigroup $FPCV_X$ is *P*-fundamental, then

 $\mathcal{P}(C\mathbf{V}) = \mathbf{P}C\mathbf{V}.$

Application. If ${\bf W}$ is any variety of $\ast\mbox{-bands},$ then

$$\mathcal{P}(C\mathbf{W}) = \mathbf{P}C\mathbf{W}.$$

That is, any (orthodox) P-restriction semigroup whose projections generate a member of Wdivides a regular (orthodox) *-semigroup with that property.

Without dirty tricks.

Using Rees matrix representations: every P-restriction semigroup whose core is completely simple divides a completely simple *-semigroup, so the equality holds for V = CS.

In general, the equality $\mathcal{P}(C\mathbf{V}) = \mathbf{P}C\mathbf{V}$ holds if and only if

$$FPCV_X \cong F\mathcal{P}(CV)_X.$$

Theorem. (By universal algebraic abstract nonsense.) For any variety V of regular *-semigroups, the free *P*-restriction semigroup $F\mathcal{P}(V)_X$ in the variety induced by V embeds in the free regular *-semigroup FV_X .

In fact, it is isomorphic to the (+,*)-subsemigroup generated by X. Moreover, this is the subsemigroup generated by X together with the projections of FV_X . As a result, if (and only if) $\mathcal{P}(C\mathbf{V}) = \mathbf{P}C\mathbf{V}$ holds, $F\mathbf{P}C\mathbf{V}_X$ can be explicitly identified within the associated free regular *-semigroup. For example, in the case of *-varieties of bands, the structure of the latter is known (Scheiblich, Kadourek and Szendrei).

In general, because the 'Munn' semigroup associated with $F\mathbf{P}C\mathbf{V}_X$ belongs to $C\mathbf{V}$, the map

$$FPCV_X \longrightarrow F\mathcal{P}(CV)_X$$

is always *P*-separating. It follows that the projection algebras of $FPCV_X$ and FCV_X are isomorphic.

Questions:

Does the positive answer for orthodox and for completely simple *-semigroups extend to the E-solid case?

Does every *P*-restriction semigroup divide a regular *-semigroup?

Who knows?

Can we go beyond regular *-semigroups? E.g. varieties of involutory semigroups, or of regular unary semigroups?

Can we go from '*P*-adequacy' to '*P*-abundancy', via 'existence varieties'?