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Largest Inverses

Let S be a regular semigroup with set of idempotents E
and let ≤ be a partial order on S. Then (S,≤) is said to be
naturally ordered if

e = ef = fe implies e ≤ f

If S has a greatest idempotent then for all x ∈ S,V (x) has
a greatest element - denoted by x0

Let S0
= {x0

: x ∈ S}. Then S0 is an inverse subsemigroup
of S and for all x ∈ S, |S0

∩ V (x)| = 1
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Inverse Transversals

S0 S

x
x0

S0 is an inverse transversal of S
if for all x ∈ S there exists a
unique x0

∈ V (x) ∩ S0

x00
= (x0)0

x000
= x0

x = (xx0)x00(x0x) = exx00fx

ex L x00x0 R x00

(x0y)0 = y0x00
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Generalisations

S0 S

x
x0

An associate of x is an element
x ′ ∈ S with xx ′x = x . S0 is an
associate transversal of S if for
all x ∈ S there exists a unique
x0
∈ A(x) ∩ S0 where A(x) is the

set of all associates of x .

In Semigroup Forum (2009) 79,
101–118, Billhardt, Giraldes,
Marques-Smith, Mendes Martins
consider the situation where x0 is
the least associate with respect
to the natural partial order on S.
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Generalizations

Let VS0(x) = V (x) ∩ S0.

S0 is an orthodox transversal of S if

1 for all x ∈ S, VS0(x) 6= ∅
2 if a,b ∈ S and {a,b} ∩ S0

6= ∅ then
VS0(a)VS0(b) ⊆ VS0(ba).

Easy to check that S0 is necessarily an orthodox subsemigroup
of S.
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Adequate transversals

Define a left congruence on S by

R∗ = {(a,b) ∈ S×S | xa = ya iff xb = yb for all x, y ∈ S1
}

and a right congruence by

L∗ = {(a,b) ∈ S×S | ax = ay iff bx = by for all x, y ∈ S1
}

We say that a semigroup is abundant if each R∗−class
and each L∗−class contains an idempotent

An abundant semigroup in which the idempotents
commute is called adequate
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Adequate transversals

Lemma
A semigroup S is adequate if and only if each L∗−class and
each R∗−class contain a unique idempotent and the
subsemigroup generated by E(S) is regular.

If S is adequate and a ∈ S denote by a∗ the unique idempotent
in L∗a and by a+ the unique idempotent in R∗a.

Lemma
If S is an adequate semigroup then for all
a,b ∈ S, (ab)∗ = (a∗b)∗ and (ab)+ = (ab+)+.
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Adequate transversals

U ⊆ S abundant subsemigroups - U is a ∗−subsemigroup
of S if

L∗(U) = L∗(S) ∩ (U × U),R∗(U) = R∗(S) ∩ (U × U)

Let S0 be an adequate ∗−subsemigroup of the abundant
semigroup S. S0 is an adequate transversal of S if for each
x ∈ S there is a unique x ∈ S0 and e, f ∈ E such that

x = exf and such that e L x+ and f R x∗.

e and f are uniquely determined by x - denoted by ex ,and
fx and E(S0) by E0.
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Adequate transversals

Adequate transversals were first introduced by El-Qallali in the
early 90s and might have been inspired by earlier joint work
with Fountain on quasi-adequate semigroups.
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Adequate transversals

If S is regular and S0 is an inverse transversal, then S0 is an
adequate transversal and

x = x00;

ex = xx0;

fx = x0x ;

x+ = x00x0 R x00;

x∗ = x0x00 L x00.
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Adequate transversals

A non-regular based on one originally given by El-Qallali:

S0 is an adequate transversal of an abundant semigroup S
M is a cancellative monoid with identity 1
M × S0 is an adequate transversal of the abundant
semigroup M × S
In fact E(M × S) = {1} × E(S) and E(M × S0) = {1} × S0

Moreover (m,a) = (m,a),e(m,a) = (1,ea) and
f(m,a) = (1, fa).
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Adequate transversals

Lemma
Let S be an abundant semigroup with an adequate transversal
S0. Then for all x ∈ S

1 ex R∗ x and fx L∗ x,
2 if x ∈ S0 then ex = x+ ∈ E0, x = x, fx = x∗ ∈ E0,
3 if x ∈ E0 then ex = x = fx = x,
4 ex L ex and hence exex = ex and exex = ex ,
5 fx R fx and hence fx fx = fx and fx fx = fx .
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Adequate transversal

sx = tx ⇒ sexxfxx∗ = texxfxx∗

⇒ sexx = texx
⇒ sexx+ = texx+

⇒ sex = fex
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Adequate transversals

I = {ex : x ∈ S}, 3 = {fx : x ∈ S}

Lemma

Let S0 be an adequate transversal of an abundant semigroup S
and let x, y ∈ S. Then

1 x R∗ y if and only if ex = ey ,
2 x L∗ y if and only if fx = fy .

Hence there are bijections I → S/R∗ and 3→ S/L∗.

|R∗x ∩ I| = 1 and that |L∗x ∩3| = 1.
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Adequate transversals

Suppose now that x ∈ Reg(S), the set of regular elements of S.
Using the fact that x R ex and x L fx then there exists a unique
x0
∈ V (x) with xx0

= ex and x0x = fx .

Theorem

If x ∈ Reg(S) then |V (x) ∩ S0
| = 1. Moreover x0

∈ S0, x = x00

and x0
= x000. Also,

I = {x ∈ Reg(S) : x = xx0
} = {xx0

: x ∈ Reg(S)}

and

3 = {x ∈ Reg(S) : x = x0x} = {x0x : x ∈ Reg(S)}.
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Adequate transversals

Let T = Reg(S), let U = T ∩ S0 and suppose that T is a
subsemigroup of S.
U is an inverse transveral of the regular semigroup T

S
S0

U

T

Theorem
If T is a subsemigroup of S then I is a left regular subband of S
and 3 is a right regular subband of S.
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Quasi-adequate

A semigroup is said to be quasi-adequate if it is abundant
and its idempotents form a subsemigroup.
It was shown by El-Qallali and Fountain that in this case
the set T of regular elements is an orthodox subsemigroup
of S.
So we see that U = T ∩ S0 is an inverse transversal of T
and I and 3 are subbands of S.
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Quasi-adequate

Proposition

Let S0 be an adequate transversal of an abundant semigroup
S. Then the following are equivalent:

1 S is quasi-adequate;
2 (∀x, y ∈ Reg(S)), (xy)0 = y0x0;
3 (∀i ∈ I)(∀l ∈ 3), (li)0 = i0l0;
4 I3 = E(S).
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Quasi-adequate

Let S be a quasi-adequate semigroup with an adequate
transversal S0 and suppose that x, y ∈ Reg(S). Then
xy = x y .
Let S be an orthodox semigroup with an adequate (and
hence inverse) transversal S0. Then for all x, y ∈ S,
xy = x y .

We say that S0 is a quasi-ideal of S if S0SS0
⊆ S0 or

equivalently if 3I ⊆ S0. These transversals have been the
subject of a great deal of study in both the inverse and
adequate cases.
Let S be an abundant semigroup with a quasi-ideal
adequate transversal S0. S is quasi-adequate if and only if
for all x, y ∈ S, xy = x y .



Inverse Transversals of Regular Semigroups Adequate Transversals

Quasi-adequate

S quasi-adequate semigroup, band of idempotents E
for e ∈ E , let E(e) denote the J−class of e in E
for a ∈ S, let a+ denote a typical element of R∗a(S) ∩ E and
let a∗ denote a typical element of L∗a(S) ∩ E .
Define a relation δ on S by

δ = {(a,b) ∈ S×S : b = eaf , for some e ∈ E(a+), f ∈ E(a∗)}.

Fountain showed that δ is an equivalence relation and is
contained in any adequate congruence ρ on S.
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Quasi-adequate

φ : S→ T is called good if for all a,b ∈ S, a R∗(S) b implies
aφ R∗(T ) bφ and a L∗(S) b implies aφ L∗(T ) bφ.
A congruence ρ is called good if the natural homomorphism
ρ\ : S→ S/ρ is good.

Lemma (Fountain)
If δ is a congruence then δ is the minimum adequate good
congruence on S.
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Quasi-adequate

Proposition (El-Qallali)
If S is a quasi-adequate semigroup with an adequate
transversal S0 then the following are equivalent

1 δ is a congruence on S,
2 δ = {(a,b) ∈ S × S : a = b},
3 for all x, y ∈ S, xy = x y.

Moreover in this case S/δ ∼= S0.

Consequently, we shall say that an adequate transversal S0 of a
quasi-adequate semigroup S is good if xy = x y for all x, y ∈ S.
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Structure Theorems

Theorem
Let S be a quasi-adequate semigroup with a good adequate
transversal S0. Then

1 xy = xfxeyy
2 exy = exexfx ey y

3 fxy = fxfx ey y fy .

(exxfx)(eyyfy ) = (exexfx ey y )
(
xfxeyy

)
(fxfx ey y fy ).
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Structure Theorems

I = ∪x∈E0Lx and I is a semilattice E0 of the left zero semigroups
Lx .

Theorem

S0 adequate semigroup with semilattice E0, I = ∪x∈E0Lx left
regular band, 3 = ∪x∈E0Rx right regular band, common
semilattice transversal E0.
∀x, y ∈ S0, ∃αx,y : Rx∗ × Ly+ → L(xy)+, βx,y : Rx∗ × Ly+ → R(xy)∗

satisfying:
1 if f ∈ Rx∗,g ∈ Ly+,h ∈ Ry∗, k ∈ Lz+ then

(f ,g)αx,y
(
(f ,g)βx,yh, k

)
αxy ,z =

(
f ,g(h, k)αy ,z

)
αx,yz(

f ,g(h, k)αy ,z
)
βx,yz(h, k)βy ,z =

(
(f ,g)βx,yh, k

)
βxy ,z,

2 (x∗, y+)αx,y = (xy)+, (x∗, y+)βx,y = (xy)∗,
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Structure Theorems

Theorem
3 if

x, x1, x2 ∈ S0,e1 ∈ Lx+1
, f1 ∈ Rx∗1 ,e2 ∈ Lx+2

, f2 ∈ Rx∗2 ,e ∈ Lx+

and if
e1(f1,e)αx1,x = e2(f2,e)αx2,x ,
x1x = x2x
(f1,e)βx1,xx∗ = (f2,e)βx2,xx∗

then
e1(f1,e)αx1,x+ = e2(f2,e)αx2,x+ ,
x1x+ = x2x+

(f1,e)βx1,x+ = (f2,e)βx2,x+ .
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Structure Theorems

Theorem
4 if

x, x1, x2 ∈ S0,e1 ∈ Lx+1
, f1 ∈ Rx∗1 ,e2 ∈ Lx+2

, f2 ∈ Rx∗2 , f ∈ Rx∗

and if
x+(f ,e1)αx,x1 = x+(f ,e2)αx,x2 ,
xx1 = xx2
(f ,e1)βx,x1 f1 = (f ,e2)βx,x2 f2

then
(f ,e1)αx∗,x1 = (f ,e2)αx∗,x2 ,
x∗x1 = x∗x2
(f ,e1)βx∗,x1 f1 = (f ,e2)βx∗,x2 f2
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Structure Theorems

Theorem
Define a multiplication on the set

W = {(e, x, f ) ∈ I × S0
×3 : e ∈ Lx+, f ∈ Rx∗}

by
(e, x, f )(g, y ,h) = (e(f ,g)αx,y , xy , (f ,g)βx,yh).

Then W is a quasi-adequate semigroup with a good adequate
transversal isomorphic to S0.

Moreover every quasi-adequate semigroup S, with a good
adequate transversal can be constructed in this way.

(a,b)αx,y = exaby and (a,b)βx,y = fxaby
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Structure Theorems

Corollary

Let S0 be an adequate semigroup with semilattice of
idempotents E0 and let I = ∪x∈E0Lx be a left normal band and
3 = ∪x∈E0Rx be a right normal band with a common semilattice
transversal E0. Let

W = {(e, x, f ) ∈ I × S0
×3 : e ∈ Lx+, f ∈ Rx∗}

and define a multiplication on W by

(e, x, f )(g, y ,h) = (e(xy)+, xy , (xy)∗h).

Then W is a quasi-adequate semigroup with a quasi-ideal,
good adequate transversal isomorphic to S0. Conversely every
such transversal can be constructed in this way.
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Structure Theorems

R = {x ∈ S : ex = ex }, L = {x ∈ S : fx = fx }

S0L R

E(S)

I 3

It can be shown that

R = {x ∈ S : x = xfx } = {xfx : x ∈ S},

L = {x ∈ S : x = exx} = {exx : x ∈ S}.
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Structure Theorems

An abundant semigroup is left (resp. right) adequate if every
R∗−class (resp. L∗−class) contains a unique idempotent.

Corollary
Let L be a left adequate semigroup and R a right adequate
semigroup with a common quasi-ideal adequate transversal S0.
Construct the spined product

L| × |R = {(x,a) ∈ L× R : x = a}

and define a multiplication on L| × |R by

(x,a)(y ,b) = (xy ,ab) = (xb, xb).

Then L| × |R is a quasi-adequate semigroup with a good,
quasi-ideal adequate transversal isomorphic to S0. Moreover
every such transversal can be constructed in this way.
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Structure Theorems

Let S be a left adequate semigroup. Since 3 = E0 then if
S is also quasi-adequate and S0 is good then we must
have Rx∗ = {x∗} and so (f ,e)βx,y = (xy)∗.

I a left regular band with a semilattice transversal E0.
Define on I a left S0

−action S0
× I → I, (x,e) 7→ x ∗ e and

which is distributive over the multiplication on I, i.e
(xy) ∗ e = x ∗ (y ∗ e) and x ∗ (ef ) = (x ∗ e)(x ∗ f ).

Construct the semidirect product of S0 by I as
I ∗ S0

= {(e, x) ∈ I × S0
} with multiplication given by

(e, x)(g, y) = (e(x ∗ g), xy)
and it is an easy matter to check that I ∗ S0 is a semigroup.
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Structure Theorems

We say that a left adequate semigroup S is left ample (formerly
called left type-A) if for all a ∈ S,e ∈ E(S), (ae) = (ae)+a.

Theorem

Let S0 be a left ample, adequate semigroup with semilattice E0

and let I = ∪x∈E0Lx be a left regular band with a semilattice
transversal E0. Suppose there is a left S0

−action S0
× I → I,

(x,e) 7→ x ∗ e which is distributive over I satisfying:
1 for all x, y ∈ S0, x ∗ y+ = (xy)+,
2 if x, x1, x2 ∈ S0,e1 ∈ Lx+1

,e2 ∈ Lx+2
and if

x+(x ∗ e1) = x+(x ∗ e2), xx1 = xx2

then
x∗ ∗ e1 = x∗ ∗ e2, x∗x1 = x∗x2
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Structure Theorems

Theorem
Define a multiplication on the set

W = {(e, x) ∈ I × S0
: e ∈ Lx+}

by
(e, x)(g, y) = (e(x ∗ g), xy).

Then W is a left adequate, quasi-adequate semigroup with a
good, left ample, adequate transversal isomorphic to S0.

Moreover every left adequate, quasi-adequate semigroup S
with a left ample, good adequate transversal can be
constructed in this way.
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Regular semigroups

Corollary

Let S0 be an inverse semigroup with semilattice of idempotents
E0 and let I be a left regular band with a semilattice transversal
isomorphic to E0. Suppose we have a left action of S0 on I,
(x,e) 7→ x ∗ e and which is distributive over the multiplication
on I satisfying

1 for all x, y ∈ S0, x ∗ (yy−1) = (xy)(xy)−1;
2 for all x ∈ S0,e ∈ I, (xx−1) ∗ e = (xx−1)e.

Define a multiplication on W = {(e, x) ∈ I × S0
: e ∈ Lxx−1}

by (e, x)(g, y) = (e(x ∗ g), xy).
Then W is a left inverse semigroup with an inverse transversal
isomorphic to S0. Moreover every left inverse semigroup S with
an inverse transversal can be constructed in this way.
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Quasi-ideals

Theorem

Let S0 be adequate with semilattice of idempotents E0. Let L
be left adequate and R right adequate and suppose that S0 is a
common quasi-ideal adequate transversal of both. Let
∗ : R × L→ S0 be a map such that

1 for all y , z ∈ L,a,b ∈ R with y = b,
(a ∗ y)fb ∗ z = a ∗ ey (b ∗ z);

2 if a ∈ S0 or x ∈ S0 then a ∗ x = ax.
Let T = {(x,a) ∈ L× R : x = a} and define

(x,a)(y ,b) = (ex(a ∗ y), (a ∗ y)fb).

Then T is an abundant semigroup with a quasi-ideal adequate
transversal T 0 with T 0 ∼= S0. Moreover every quasi-ideal
adequate transversal can be constructed in this way.
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