Adequate Transversals of Abundant Semigroups

Jim Renshaw (joint work with Jehan Al-Bar)

December 17, 2009

Outline

Inverse Transversals of Regular Semigroups

- Largest Inverses
- Inverse Transversals and Generalisations

2 Adequate Transversals

- Definitions
- Quasi-adequate semigroups
- Structure Theorems
- The Regular case
- Quasi-ideals

Largest Inverses

 Let S be a regular semigroup with set of idempotents E and let ≤ be a partial order on S. Then (S, ≤) is said to be naturally ordered if

$$e = ef = fe$$
 implies $e \le f$

- If S has a greatest idempotent then for all x ∈ S, V(x) has a greatest element - denoted by x⁰
- Let $S^0 = \{x^0 : x \in S\}$. Then S^0 is an inverse subsemigroup of *S* and for all $x \in S$, $|S^0 \cap V(x)| = 1$

Inverse Transversals of Regular Semigroups $_{\circ \bullet \circ \circ}$

Inverse Transversals

 S^0 is an *inverse transversal* of S if for all $x \in S$ there exists a unique $x^0 \in V(x) \cap S^0$

$$x^{00} = (x^{0})^{0}$$

$$x^{000} = x^{0}$$

$$x = (xx^{0})x^{00}(x^{0}x) = e_{x}x^{00}f_{x}$$

$$e_{x} \mathcal{L} x^{00}x^{0} \mathcal{R} x^{00}$$

$$(x^{0}y)^{0} = y^{0}x^{00}$$

Inverse Transversals of Regular Semigroups $_{\circ\circ\circ\circ\circ}$

Generalisations

An associate of x is an element $x' \in S$ with xx'x = x. S^0 is an associate transversal of S if for all $x \in S$ there exists a unique $x^0 \in A(x) \cap S^0$ where A(x) is the set of all associates of x.

In Semigroup Forum (2009) 79, 101–118, Billhardt, Giraldes, Marques-Smith, Mendes Martins consider the situation where x^0 is the *least associate* with respect to the natural partial order on *S*.

Generalizations

Let $V_{S^0}(x) = V(x) \cap S^0$.

 S^0 is an orthodox transversal of S if

• for all
$$x \in S$$
, $V_{S^0}(x) \neq \emptyset$

if
$$a, b \in S$$
 and $\{a, b\} \cap S^0 \neq \emptyset$ then $V_{S^0}(a) V_{S^0}(b) \subseteq V_{S^0}(ba)$.

Easy to check that S^0 is necessarily an orthodox subsemigroup of *S*.

• Define a left congruence on *S* by

 $\mathcal{R}^* = \{(a, b) \in S \times S \mid xa = ya \text{ iff } xb = yb \text{ for all } x, y \in S^1\}$

and a right congruence by

 $\mathcal{L}^* = \{ (a, b) \in S \times S \mid ax = ay \text{ iff } bx = by \text{ for all } x, y \in S^1 \}$

- We say that a semigroup is *abundant* if each *R**-class and each *L**-class contains an idempotent
- An abundant semigroup in which the idempotents commute is called *adequate*

Lemma

A semigroup S is adequate if and only if each \mathcal{L}^* -class and each \mathcal{R}^* -class contain a unique idempotent and the subsemigroup generated by E(S) is regular.

If *S* is adequate and $a \in S$ denote by a^* the unique idempotent in L_a^* and by a^+ the unique idempotent in R_a^* .

Lemma

If *S* is an adequate semigroup then for all $a, b \in S$, $(ab)^* = (a^*b)^*$ and $(ab)^+ = (ab^+)^+$.

 U ⊆ S abundant subsemigroups - U is a *-subsemigroup of S if

$$\mathcal{L}^*(U) = \mathcal{L}^*(S) \cap (U \times U), \mathcal{R}^*(U) = \mathcal{R}^*(S) \cap (U \times U)$$

Let S⁰ be an adequate *-subsemigroup of the abundant semigroup S. S⁰ is an adequate transversal of S if for each x ∈ S there is a unique x̄ ∈ S⁰ and e, f ∈ E such that

$$x = e\overline{x}f$$
 and such that $e \mathcal{L} \overline{x}^+$ and $f \mathcal{R} \overline{x}^*$.

e and *f* are uniquely determined by *x* - denoted by e_x , and f_x and $E(S^0)$ by E^0 .

Adequate transversals were first introduced by El-Qallali in the early 90s and might have been inspired by earlier joint work with Fountain on quasi-adequate semigroups.

If S is regular and S^0 is an inverse transversal, then S^0 is an adequate transversal and

•
$$\overline{x} = x^{00}$$
;

- $e_x = xx^0$;
- $f_x = x^0 x;$
- $\overline{x}^+ = x^{00}x^0 \mathcal{R} x^{00};$
- $\overline{x}^* = x^0 x^{00} \mathcal{L} x^{00}$.

A non-regular based on one originally given by El-Qallali:

- S^0 is an adequate transversal of an abundant semigroup S
- M is a cancellative monoid with identity 1
- $M \times S^0$ is an adequate transversal of the abundant semigroup $M \times S$
- In fact $E(M \times S) = \{1\} \times E(S)$ and $E(M \times S^0) = \{1\} \times S^0$
- Moreover $\overline{(m, a)} = (m, \overline{a}), e_{(m,a)} = (1, e_a)$ and $f_{(m,a)} = (1, f_a)$.

Lemma

Let *S* be an abundant semigroup with an adequate transversal S^0 . Then for all $x \in S$

$$\bigcirc e_x \mathcal{R}^* x \text{ and } f_x \mathcal{L}^* x,$$

3 if
$$x \in S^0$$
 then $e_x = x^+ \in E^0$, $\overline{x} = x$, $f_x = x^* \in E^0$,

$$if x \in E^0 \ then \ e_x = \overline{x} = f_x = x,$$

•
$$e_{\overline{x}} \mathcal{L} e_x$$
 and hence $e_{\overline{x}} e_x = e_{\overline{x}}$ and $e_x e_{\overline{x}} = e_x$,

Inverse Transversals of Regular Semigroups

Adequate transversal

$$sx = tx \implies se_x \overline{x} f_x \overline{x}^* = te_x \overline{x} f_x \overline{x}^*$$

$$\implies se_x \overline{x} = te_x \overline{x}$$

$$\implies se_x \overline{x}^+ = te_x \overline{x}^+$$

$$\implies se_x = fe_x$$

Inverse Transversals of Regular Semigroups

Adequate transversals

$$I = \{e_x : x \in S\}, \quad \Lambda = \{f_x : x \in S\}$$

Lemma

Let S^0 be an adequate transversal of an abundant semigroup S and let $x, y \in S$. Then

1
$$x \mathcal{R}^*$$
 y if and only if $e_x = e_y$,

2 $x \mathcal{L}^* y$ if and only if $f_x = f_y$.

Hence there are bijections $I \to S/\mathcal{R}^*$ and $\Lambda \to S/\mathcal{L}^*$.

 $|R_x^* \cap I| = 1$ and that $|L_x^* \cap \Lambda| = 1$.

Suppose now that $x \in Reg(S)$, the set of regular elements of *S*. Using the fact that $x \mathcal{R} e_x$ and $x \mathcal{L} f_x$ then there exists a unique $x^0 \in V(x)$ with $xx^0 = e_x$ and $x^0x = f_x$.

Theorem

If $x \in Reg(S)$ then $|V(x) \cap S^0| = 1$. Moreover $x^0 \in S^0$, $\overline{x} = x^{00}$ and $x^0 = x^{000}$. Also,

$$I = \{x \in Reg(S) : x = xx^0\} = \{xx^0 : x \in Reg(S)\}$$

and

$$\Lambda = \{ x \in Reg(S) : x = x^0 x \} = \{ x^0 x : x \in Reg(S) \}.$$

Let T = Reg(S), let $U = T \cap S^0$ and suppose that T is a subsemigroup of S.

U is an inverse transveral of the regular semigroup T

Theorem

If T is a subsemigroup of S then I is a left regular subband of S and Λ is a right regular subband of S.

- A semigroup is said to be *quasi-adequate* if it is abundant and its idempotents form a subsemigroup.
- It was shown by EI-Qallali and Fountain that in this case the set T of regular elements is an orthodox subsemigroup of S.
- So we see that U = T ∩ S⁰ is an inverse transversal of T and I and Λ are subbands of S.

Proposition

Let S⁰ be an adequate transversal of an abundant semigroup

- S. Then the following are equivalent:
 - S is quasi-adequate;

②
$$(\forall x, y \in Reg(S)), (xy)^0 = y^0 x^0;$$

$$(\forall i \in I) (\forall l \in \Lambda), (li)^0 = i^0 l^0;$$

 $\bullet I\Lambda = E(S).$

- Let *S* be a quasi-adequate semigroup with an adequate transversal S^0 and suppose that $x, y \in Reg(S)$. Then $\overline{xy} = \overline{x} \ \overline{y}$.
- Let S be an orthodox semigroup with an adequate (and hence inverse) transversal S⁰. Then for all x, y ∈ S, xy = x y.

We say that S^0 is a *quasi-ideal* of S if $S^0SS^0 \subseteq S^0$ or equivalently if $\Lambda I \subseteq S^0$. These transversals have been the subject of a great deal of study in both the inverse and adequate cases.

Let S be an abundant semigroup with a quasi-ideal adequate transversal S⁰. S is quasi-adequate if and only if for all x, y ∈ S, xy = x y.

- S quasi-adequate semigroup, band of idempotents E
- for $e \in E$, let E(e) denote the \mathcal{J} -class of e in E
- for a ∈ S, let a⁺ denote a typical element of R^{*}_a(S) ∩ E and let a^{*} denote a typical element of L^{*}_a(S) ∩ E.
- Define a relation δ on S by

 $\delta = \{(a, b) \in S \times S : b = eaf, \text{ for some } e \in E(a^+), f \in E(a^*)\}.$

Fountain showed that δ is an equivalence relation and is contained in any adequate congruence ρ on *S*.

 $\phi: S \to T$ is called *good* if for all $a, b \in S$, $a \mathcal{R}^*(S)$ *b* implies $a\phi \mathcal{R}^*(T) b\phi$ and $a \mathcal{L}^*(S)$ *b* implies $a\phi \mathcal{L}^*(T) b\phi$. A congruence ρ is called *good* if the natural homomorphism $\rho^{\natural}: S \to S/\rho$ is good.

Lemma (Fountain)

If δ is a congruence then δ is the minimum adequate good congruence on S.

Proposition (EI-Qallali)

If S is a quasi-adequate semigroup with an adequate transversal S^0 then the following are equivalent

1
$$\delta$$
 is a congruence on S,

3 for all
$$x, y \in S$$
, $\overline{xy} = \overline{x} \overline{y}$.

Moreover in this case $S/\delta \cong S^0$.

Consequently, we shall say that an adequate transversal S^0 of a quasi-adequate semigroup *S* is *good* if $\overline{xy} = \overline{x} \ \overline{y}$ for all $x, y \in S$.

Theorem

Let S be a quasi-adequate semigroup with a good adequate transversal S^0 . Then

$$\overline{xy} = \overline{\overline{x}} f_x e_y \overline{\overline{y}}$$

$$e_{xy} = e_x e_{\overline{x}} f_x e_y \overline{y}$$

$$f_{xy} = f_{\overline{x}} f_x e_y \overline{y} f_y.$$

$$(\boldsymbol{e}_{\boldsymbol{X}}\overline{\boldsymbol{X}}f_{\boldsymbol{X}})(\boldsymbol{e}_{\boldsymbol{Y}}\overline{\boldsymbol{Y}}f_{\boldsymbol{Y}}) = (\boldsymbol{e}_{\boldsymbol{X}}\boldsymbol{e}_{\overline{\boldsymbol{X}}f_{\boldsymbol{X}}\boldsymbol{e}_{\boldsymbol{Y}}\overline{\boldsymbol{Y}}})\left(\overline{\overline{\boldsymbol{X}}f_{\boldsymbol{X}}\boldsymbol{e}_{\boldsymbol{Y}}\overline{\boldsymbol{Y}}}\right)(f_{\overline{\boldsymbol{X}}f_{\boldsymbol{X}}\boldsymbol{e}_{\boldsymbol{Y}}\overline{\boldsymbol{Y}}}f_{\boldsymbol{Y}}).$$

 $I = \bigcup_{x \in E^0} L_x$ and I is a semilattice E^0 of the left zero semigroups L_x .

Theorem

 S^0 adequate semigroup with semilattice E^0 , $I = \bigcup_{x \in E^0} L_x$ left regular band, $\Lambda = \bigcup_{x \in F^0} R_x$ right regular band, common semilattice transversal E⁰. $\forall x, y \in S^0, \exists \alpha_{x,y} : R_{x^*} \times L_{y^+} \to L_{(xy)^+}, \beta_{x,y} : R_{x^*} \times L_{y^+} \to R_{(xy)^*}$ satisfying: **1** if $f \in R_{x^*}$, $g \in L_{v^+}$, $h \in R_{v^*}$, $k \in L_{z^+}$ then $(f, g)\alpha_{x,y}((f, g)\beta_{x,y}h, k)\alpha_{xy,z} = (f, g(h, k)\alpha_{y,z})\alpha_{x,yz}$ $(f, g(h, k)\alpha_{v,z})\beta_{x,yz}(h, k)\beta_{v,z} = ((f, g)\beta_{x,y}h, k)\beta_{xy,z},$

2
$$(X^*, y^+)\alpha_{x,y} = (Xy)^+, (X^*, y^+)\beta_{x,y} = (Xy)^*,$$

Theorem

3

$$\begin{array}{l} \text{if} \\ x, x_1, x_2 \in S^0, e_1 \in L_{x_1^+}, f_1 \in R_{x_1^*}, e_2 \in L_{x_2^+}, f_2 \in R_{x_2^*}, e \in L_{x^+} \\ \text{and if} \\ \bullet \ e_1(f_1, e) \alpha_{x_1, x} = e_2(f_2, e) \alpha_{x_2, x}, \\ \bullet \ x_1 x = x_2 x \\ \bullet \ (f_1, e) \beta_{x_1, x} x^* = (f_2, e) \beta_{x_2, x} x^* \\ \text{then} \\ \bullet \ e_1(f_1, e) \alpha_{x_1, x^+} = e_2(f_2, e) \alpha_{x_2, x^+}, \\ \bullet \ x_1 x^+ = x_2 x^+ \\ \bullet \ (f_1, e) \beta_{x_1, x^+} = (f_2, e) \beta_{x_2, x^+}. \end{array}$$

Theorem

if

$$x, x_1, x_2 \in S^0, e_1 \in L_{x_1^+}, f_1 \in R_{x_1^*}, e_2 \in L_{x_2^+}, f_2 \in R_{x_2^*}, f \in R_{x^*}$$

and if
• $x^+(f, e_1)\alpha_{x,x_1} = x^+(f, e_2)\alpha_{x,x_2},$
• $xx_1 = xx_2$
• $(f, e_1)\beta_{x,x_1}f_1 = (f, e_2)\beta_{x,x_2}f_2$
then
• $(f, e_1)\alpha_{x^*,x_1} = (f, e_2)\alpha_{x^*,x_2},$
• $x^*x_1 = x^*x_2$
• $(f, e_1)\beta_{x^*,x_1}f_1 = (f, e_2)\beta_{x^*,x_2}f_2$

Theorem

Define a multiplication on the set

$$W = \{(e, x, f) \in I \times S^0 \times \Lambda : e \in L_{x^+}, f \in R_{x^*}\}$$

by

$$(\boldsymbol{e},\boldsymbol{x},f)(\boldsymbol{g},\boldsymbol{y},\boldsymbol{h})=(\boldsymbol{e}(f,\boldsymbol{g})\alpha_{\boldsymbol{x},\boldsymbol{y}},\boldsymbol{x}\boldsymbol{y},(f,\boldsymbol{g})\beta_{\boldsymbol{x},\boldsymbol{y}}\boldsymbol{h}).$$

Then W is a quasi-adequate semigroup with a good adequate transversal isomorphic to S^0 .

Moreover every quasi-adequate semigroup *S*, with a good adequate transversal can be constructed in this way.

 $(a, b)\alpha_{x,y} = e_{xaby}$ and $(a, b)\beta_{x,y} = f_{xaby}$

Corollary

Let S^0 be an adequate semigroup with semilattice of idempotents E^0 and let $I = \bigcup_{x \in E^0} L_x$ be a left normal band and $\Lambda = \bigcup_{x \in E^0} R_x$ be a right normal band with a common semilattice transversal E^0 . Let

$$W = \{(e, x, f) \in I \times S^0 \times \Lambda : e \in L_{x^+}, f \in R_{x^*}\}$$

and define a multiplication on W by

$$(e, x, f)(g, y, h) = (e(xy)^+, xy, (xy)^*h).$$

Then W is a quasi-adequate semigroup with a quasi-ideal, good adequate transversal isomorphic to S^0 . Conversely every such transversal can be constructed in this way.

$$R = \{x \in S : e_x = e_{\overline{x}}\}, \ L = \{x \in S : f_x = f_{\overline{x}}\}$$

It can be shown that

$$R = \{x \in S : x = \overline{x}f_x\} = \{\overline{x}f_x : x \in S\},\$$
$$L = \{x \in S : x = e_x\overline{x}\} = \{e_x\overline{x} : x \in S\}.$$

An abundant semigroup is *left (resp. right) adequate* if every \mathcal{R}^* -class (resp. \mathcal{L}^* -class) contains a unique idempotent.

Corollary

Let L be a left adequate semigroup and R a right adequate semigroup with a common quasi-ideal adequate transversal S^0 . Construct the spined product

$$L| \times |R = \{(x, a) \in L \times R : \overline{x} = \overline{a}\}$$

and define a multiplication on $L | \times | R$ by

$$(x, a)(y, b) = (x\overline{y}, \overline{a}b) = (x\overline{b}, \overline{x}b).$$

Then $L| \times |R|$ is a quasi-adequate semigroup with a good, quasi-ideal adequate transversal isomorphic to S^0 . Moreover every such transversal can be constructed in this way.

- Let S be a left adequate semigroup. Since Λ = E⁰ then if S is also quasi-adequate and S⁰ is good then we must have R_{x*} = {x*} and so (f, e)β_{x,y} = (xy)*.
- *I* a left regular band with a semilattice transversal E⁰. Define on *I* a left S⁰-action S⁰ × *I* → *I*, (*x*, *e*) → *x* * *e* and which is *distributive* over the multiplication on *I*, i.e (*xy*) * *e* = *x* * (*y* * *e*) and *x* * (*ef*) = (*x* * *e*)(*x* * *f*).
- Construct the semidirect product of S^0 by I as $I * S^0 = \{(e, x) \in I \times S^0\}$ with multiplication given by (e, x)(g, y) = (e(x * g), xy)

and it is an easy matter to check that $I * S^0$ is a semigroup.

We say that a left adequate semigroup *S* is *left ample* (formerly called *left type-A*) if for all $a \in S$, $e \in E(S)$, $(ae) = (ae)^+a$.

Theorem

Let S^0 be a left ample, adequate semigroup with semilattice E^0 and let $I = \bigcup_{x \in E^0} L_x$ be a left regular band with a semilattice transversal E^0 . Suppose there is a left S^0 -action $S^0 \times I \rightarrow I$, $(x, e) \mapsto x * e$ which is distributive over I satisfying:

• for all
$$x, y \in S^0$$
, $x * y^+ = (xy)^+$,

2 if $x, x_1, x_2 \in S^0$, $e_1 \in L_{x_1^+}$, $e_2 \in L_{x_2^+}$ and if

$$x^+(x * e_1) = x^+(x * e_2), \ xx_1 = xx_2$$

then

$$X^* * e_1 = X^* * e_2, X^* X_1 = X^* X_2$$

Theorem

Define a multiplication on the set

$$W = \{(e, x) \in I \times S^0 : e \in L_{x^+}\}$$

by

$$(e, x)(g, y) = (e(x * g), xy).$$

Then W is a left adequate, quasi-adequate semigroup with a good, left ample, adequate transversal isomorphic to S^0 .

Moreover every left adequate, quasi-adequate semigroup S with a left ample, good adequate transversal can be constructed in this way.

Regular semigroups

Corollary

Let S^0 be an inverse semigroup with semilattice of idempotents E^0 and let I be a left regular band with a semilattice transversal isomorphic to E^0 . Suppose we have a left action of S^0 on I, $(x, e) \mapsto x * e$ and which is distributive over the multiplication on I satisfying

- for all $x, y \in S^0$, $x * (yy^{-1}) = (xy)(xy)^{-1}$;
- 2 for all $x \in S^0$, $e \in I$, $(xx^{-1}) * e = (xx^{-1})e$.

Define a multiplication on $W = \{(e, x) \in I \times S^0 : e \in L_{xx^{-1}}\}$ by (e, x)(g, y) = (e(x * g), xy).

Then W is a left inverse semigroup with an inverse transversal isomorphic to S^0 . Moreover every left inverse semigroup S with an inverse transversal can be constructed in this way.

Quasi-ideals

Theorem

Let S^0 be adequate with semilattice of idempotents E^0 . Let L be left adequate and R right adequate and suppose that S^0 is a common quasi-ideal adequate transversal of both. Let $* : R \times L \rightarrow S^0$ be a map such that

• for all $y, z \in L$, $a, b \in R$ with $\overline{y} = \overline{b}$, $(a * y)f_b * z = a * e_y(b * z);$

2 if
$$a \in S^0$$
 or $x \in S^0$ then $a * x = ax$.

Let $T = \{(x, a) \in L \times R : \overline{x} = \overline{a}\}$ and define

$$(x, a)(y, b) = (e_x(a * y), (a * y)f_b).$$

Then T is an abundant semigroup with a quasi-ideal adequate transversal T^0 with $T^0 \cong S^0$. Moreover every quasi-ideal adequate transversal can be constructed in this way.