Approaches to tiling semigroups

Nick Gilbert
Heriot-Watt University, Edinburgh (joint work with Erzsi Dombi)

Periodic tilings

Approaches to tiling semigroups

Non-periodic tilings

Ulrich Kortenkamp: Paving the Alexanderplatz

Tilings of \mathbb{R}^{n}

A tile in \mathbb{R}^{n} is a connected bounded subset t that is the closure of its interior, with a colour assigned from a set \sum.
A tiling \mathcal{T} of \mathbb{R}^{n} is a union of tiles meeting only at their boundaries.
We always assume there are only finitely many different types of tiles: type \equiv equivalence up to Σ-preserving translation in \mathbb{R}^{n}.
One tile type and one colour give a vanilla tiling of \mathbb{R}^{n}.
A marked pattern in \mathcal{T} is a finite connected collection of tiles in \mathcal{T}, with two chosen distinguished tiles, the in-tile and the out - tile (possibly equal) - up to equivalence under translation.

History

- Johannes Kellendonk (1997): intro tiling semigroups
- Kellendonk \& Mark Lawson (2000): general theory
- Yongwen Zhu (2002): algebraic properties
- Lawson (2004): specific theory for one-dimensional case
- Alan Forrest, John Hunton \& Kellendonk (1999-2008): cohomological invariants
- Don McAlister \& Filipa Soares (2005-2010)
- Erzsi Dombi \& NDG (2007-10)

The tiling semigroup

- tiling \mathcal{T} has tiling semigroup $S(\mathcal{T})$, with $0 \in S(\mathcal{T})$,
- non-zero elements are marked patterns,
- multiply P, Q by matching out-tile of P with in-tile of Q : if resultant overlap matches, and then if $P \cup Q$ is a pattern, $P Q=P \cup Q$ marked at the in-tile of P and the out-tile of Q. Non-matching $\Longrightarrow P Q=0$.

Three possible reasons for $P Q=0$:

- in- and out- tiles don't match,
- rest of overlap doesn't match,
- $P \cup Q$ isn't a pattern in \mathcal{T}

Multiplication in $S(\mathcal{T})$

Basic properties of tiling semigroups

- idempotent \Longleftrightarrow in-tile $=$ out-tile
- tiling semigroups are inverse: get P^{-1} by switching the inand out- tiles
- tiling semigroups are combinatorial, completely semisimple, E^{*}-unitary inverse semigroups.
- natural partial order is reverse inclusion of marked patterns:

$$
P \leq Q \Longleftrightarrow P \supseteq Q \text { as marked patterns }
$$

so big patterns are below small ones in the natural partial order.

One dimensional tilings

Fix a finite alphabet $A=\left\{a_{1}, \ldots, a_{n}\right\}$ ($n \geq 2$ most of the time). We can identify a one dimensional tiling as a bi-infinite string over A :

$$
\mathcal{T}=\cdots a_{i_{-2}} a_{i_{-1}} a_{i_{0}} a_{i_{1}} a_{i_{2}} \cdots
$$

- Language $L(\mathcal{T})$ is the set of finite substrings of \mathcal{T}
- $L(\mathcal{T})$ is factorial - closed under substrings
- A marked pattern is now a word in $L(\mathcal{T})$ with distinguished inand out- letters à and b

The free monogenic inverse monoid

- denote by FIM_{1}
- tiling semigroup of 1-diml vanilla tiling (with 0 removed)
- elements are marked strings on a single letter t
- multiply by matching out- and in- markers and superposing strings
- strings always match, and $\check{t}=1$
- gap between in- and out- letter is a hom to \mathbb{Z}
- Give coords in $\mathbb{Z}^{3}: t_{p} t_{p+1} \cdots t_{-1} \grave{t}_{0} t_{1} \cdots t_{r}^{\prime} \cdots t_{q} \mapsto(p, q, r)$

A presentation for $S(\mathcal{T})$

Let \mathcal{T} be a one-dimensional tiling with alphabet $A=\left\{a_{1}, \ldots, a_{n}\right\}$.

Theorem (McAlister-Soares 2006)

$S(\mathcal{T})$ is generated by the single-tile idempotents $\check{a r}_{i}$ and the two-tile patterns $t_{i j}=\grave{a}_{i} a_{j}$, with defining relations

$$
\begin{gathered}
\check{a}_{i}^{2}=\check{a}_{i}, \check{a}_{i} \check{a}_{j}=0, \\
\check{a}_{i} t_{i j}=t_{i j}=t_{i j} \check{a}_{j} \\
t_{i j}^{-1} t_{i k}=0 \text { if } j \neq k, t_{i j} t_{k j}^{-1}=0 \text { if } i \neq k \\
w=0 \text { if } w \text { has underlying word } \notin L(\mathcal{T})
\end{gathered}
$$

Finite presentability

Corollary

$S(\mathcal{T})$ is a finitely presented inverse semigroup iff $L(\mathcal{T})$ is a locally testable language.

Locally testable: determine membership by substrings of fixed length. Factorial and locally testable iff membership determined by finitely many forbidden subwords.
More on finite presentability in dimension >1 later.

F^{*}-inverse

1-diml tiling semigroups are F^{*}-inverse: each non-zero element is below a unique maximal element in the natural partial order: $u \leq \widehat{u}$ where \widehat{u} is the smallest substring of π carrying the in- and out- tiles of the marked string u.
n-diml tiling semigroups $(n>1)$ need not be F^{*}-inverse \ldots
... but more of this later.

Periodic tilings

For detailed structure, simplify to periodic \mathcal{T} : repeat fixed finite string ad bi-infinitum ...
...abcababcababcababcab...

Theorem (Dombi-NDG 2009)

The tiling semigroup of a one-dimensional periodic tiling with period of length m embeds into $\mathcal{P}\left(\mathbb{Z}_{m}\right) \rtimes_{0} \mathrm{FIM}_{1}$, and the subsemigroups that arise are completely determined.

Embeds where?

- $\mathcal{P}\left(\mathbb{Z}_{m}\right)$ - power set of subsets of \mathbb{Z}_{m}
- FIM $_{1}$ - free monogenic inverse monoid
- $\mathrm{FIM}_{1} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{m}$ so FIM_{1} acts on $\mathcal{P}\left(\mathbb{Z}_{m}\right)$ by translation
- $\mathcal{P}\left(\mathbb{Z}_{m}\right) \rtimes_{0}$ FIM $_{1}$ is the semidirect product of monoids, with $(\emptyset, w)=0$ for all $w \in \mathrm{FIM}_{1}$.

Sketch proof of the theorem

\mathcal{T} periodic with alphabet $A=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ and period $p_{0} p_{1} \cdots p_{m-1}$. Let π be a marked string in \mathcal{T} of length ℓ. Find coords $\tau(\pi) \in \mathbb{Z}^{3}$ just by counting (ignore spelling!) If $\ell \geq m$, the in-letter is a unique p_{j} and we set $\Omega(\pi)=\{j\}$, but if $\ell<m$ then the in-letter may be p_{j} with j in some finite subset $\Omega(\pi)$.

Theorem

$S(\mathcal{T})$ embedded in $\mathcal{P}\left(\mathbb{Z}_{m}\right) \rtimes_{0} \mathrm{FIM}_{1}$ by $\pi \mapsto(\Omega(\pi), \tau(\pi))$.

Hypercubic tilings of \mathbb{R}^{n}

- McAlister-Soares 2009
- tiling \mathbb{R}^{n} by (coloured) regular cubic lattice
- dual graph is the Cayley graph of \mathbb{Z}^{n} with coloured vertices
- tiling is replaced by colouring map $\chi: \mathbb{Z}^{n} \rightarrow \Sigma$

Commutators are idempotents:

In any tiling semigroup $S(\mathcal{T}), u^{-1} v^{-1} u v$ is an idempotent: distance between in-tile and out-tile must be 0 .

X

X^{-1}

$X^{-1} Y^{-1} X Y$

High dimensional, but vanilla

For the n-diml vanilla hypercubic tiling \mathcal{V} :

- all patterns have non-zero product, so 0 is removable
- Set

$$
M=\operatorname{lnv}\left\langle a, b:\left(u^{-1} v^{-1} u v\right)^{2}=u^{-1} v^{-1} u v\left(u, v \in\left\{a^{ \pm}, b^{ \pm}\right\}^{+}\right\rangle\right.
$$

- Margolis-Meakin (1989): M is the universal E-unitary inverse monoid with max group image \mathbb{Z}^{2}
- So have $\phi: M \rightarrow S(\mathcal{V})$

Theorem (McAlister-Soares 2009)

$\operatorname{ker} \phi$ is not finitely generated as a congruence on M.

LF Y-HNN

Locally full Yamamura HNN-extensions of semilattices with zero:

- E a semilattice, $0 \in E:(e)^{\downarrow}=\{x \in E: x \leq e\}$,
- Family of isomorphisms $\phi_{i}:\left(e_{i}\right)^{\downarrow} \rightarrow\left(f_{i}\right)^{\downarrow}$,
- $S=\operatorname{lnv}_{0}\left\langle E, t_{i}: t_{i} t_{i}^{-1}=e_{i}, t_{i}^{-1} t_{i}=f_{i}, t_{i}^{-1} x t_{i}=x \phi_{i}\left(x \leq e_{i}\right)\right\rangle$

Theorem (Yamamura 1999)
$E(S)=E$, every subgroup of S is free, and S is (strongly) F^{*}-inverse.

The path extension

For an n-diml tiling \mathcal{T}, non-zero elements of the path extension $\Pi(\mathcal{T})$ are pairs (P, u) where

- $P \in S(\mathcal{T})$ is a marked pattern,
- u is a reduced path in the dual graph of \mathcal{T} from the in-tile to the out-tile of P
Multiply componentwise: $(P, u)(Q, v)=(P Q, u v)$, where $u v$ is the free reduction of the concatenation of u and v (ie we work in the fundamental groupoid of the dual graph).

Multiplication in $\Pi(\mathcal{T})$

Path extension covers...

For any n-diml tiling \mathcal{T} :

Theorem (Dombi-NDG 2010?)

The path extension is a strongly F^{*}-inverse cover of $S(\mathcal{T})$ and is isomorphic to a locally full Yamamura HNN extension of $E(S(\mathcal{T}))$. (If $n=1$ the covering map is an isomorphism.)

Y-HNN ingredients

- $E=E(S(\mathcal{T}))=E(\Pi(\mathcal{T}))$,
- Idempotents e_{i} are all possible two-tile patterns with a fixed choice of marked tile,
- Idempotents f_{i} choose the other tile,
- Isom $\phi: E_{i} \rightarrow F_{i}$ switches the marking.

