

Approaches to tiling semigroups

Nick Gilbert Heriot-Watt University, Edinburgh (joint work with Erzsi Dombi)

Periodic tilings

HNN covers

Periodic tilings

Non-periodic tilings

Ulrich Kortenkamp: Paving the Alexanderplatz

Approaches to tiling semigroups

A tile in \mathbb{R}^n is a connected bounded subset t that is the closure of its interior, with a colour assigned from a set Σ . A tiling \mathcal{T} of \mathbb{R}^n is a union of tiles meeting only at their boundaries. We always assume there are only finitely many different types of tiles: type \equiv equivalence up to Σ -preserving translation in \mathbb{R}^n . One tile type and one colour give a vanilla tiling of \mathbb{R}^n . A marked pattern in \mathcal{T} is a finite connected collection of tiles in \mathcal{T} , with two chosen distinguished tiles, the **in-tile** and the **out** – **tile** (possibly equal) – up to equivalence under translation.

- Johannes Kellendonk (1997): intro tiling semigroups
- Kellendonk & Mark Lawson (2000): general theory
- Yongwen Zhu (2002): algebraic properties
- Lawson (2004): specific theory for one-dimensional case
- Alan Forrest, John Hunton & Kellendonk (1999-2008): cohomological invariants
- Don McAlister & Filipa Soares (2005-2010)
- Erzsi Dombi & NDG (2007-10)

- ▶ tiling \mathcal{T} has tiling semigroup $S(\mathcal{T})$, with $0 \in S(\mathcal{T})$,
- non-zero elements are marked patterns,
- multiply P, Q by matching out-tile of P with in-tile of Q: if resultant overlap matches, and then if P ∪ Q is a pattern,
 PQ = P ∪ Q marked at the in-tile of P and the out-tile of Q.
 Non-matching ⇒ PQ = 0.

Three possible reasons for PQ = 0:

- in- and out- tiles don't match,
- rest of overlap doesn't match,
- $P \cup Q$ isn't a pattern in \mathcal{T}

Multiplication in S(T)

Basic properties of tiling semigroups

- idempotent \iff in-tile = out-tile
- tiling semigroups are inverse: get P⁻¹ by switching the inand out- tiles
- tiling semigroups are combinatorial, completely semisimple, E*-unitary inverse semigroups.
- natural partial order is reverse inclusion of marked patterns:

 $P \leq Q \iff P \supseteq Q$ as marked patterns

so big patterns are below small ones in the natural partial order.

One dimensional tilings

Fix a finite alphabet $A = \{a_1, \ldots, a_n\}$ $(n \ge 2 \text{ most of the time})$. We can identify a *one dimensional tiling* as a bi-infinite string over A:

$$\mathcal{T}=\cdots a_{i_{-2}}a_{i_{-1}}a_{i_0}a_{i_1}a_{i_2}\cdots$$

- ▶ Language *L*(*T*) is the set of finite substrings of *T*
- L(T) is factorial closed under substrings
- ► A marked pattern is now a word in L(T) with distinguished inand out- letters à and b

The free monogenic inverse monoid

- denote by FIM₁
- tiling semigroup of 1-diml vanilla tiling (with 0 removed)
- elements are marked strings on a single letter t
- multiply by matching out- and in- markers and superposing strings
- strings always match, and $\check{t}=1$
- \blacktriangleright gap between in- and out- letter is a hom to $\mathbb Z$
- Give coords in \mathbb{Z}^3 : $t_p t_{p+1} \cdots t_{-1} t_0 t_1 \cdots t_r \cdots t_q \mapsto (p, q, r)$

A presentation for $S(\mathcal{T})$

Let \mathcal{T} be a one-dimensional tiling with alphabet $A = \{a_1, \ldots, a_n\}$.

Theorem (McAlister-Soares 2006)

S(T) is generated by the single-tile idempotents \check{a}_i and the two-tile patterns $t_{ij} = \grave{a}_i \acute{a}_j$, with defining relations

$$\check{a_i}^2 = \check{a_i}, \check{a_i}\check{a_j} = 0,$$

$$\begin{split} \check{a}_{i}t_{ij} &= t_{ij} = t_{ij}\check{a}_{j} \\ t_{ij}^{-1}t_{ik} &= 0 \text{ if } j \neq k, t_{ij}t_{kj}^{-1} = 0 \text{ if } i \neq k \\ w &= 0 \text{ if } w \text{ has underlying word } \notin L(\mathcal{T}) \end{split}$$

Finite presentability

Corollary

 $S(\mathcal{T})$ is a finitely presented inverse semigroup iff $L(\mathcal{T})$ is a locally testable language.

Locally testable: determine membership by substrings of fixed length. Factorial and locally testable iff membership determined by finitely many forbidden subwords.

More on finite presentability in dimension > 1 later.

1-diml tiling semigroups are F^* -inverse: each non-zero element is below a unique maximal element in the natural partial order: $u \leq \hat{u}$ where \hat{u} is the smallest substring of π carrying the in- and out- tiles of the marked string u. *n*-diml tiling semigroups (n > 1) need not be F^* -inverse but more of this later. For detailed structure, simplify to *periodic* \mathcal{T} : repeat fixed finite string *ad bi-infinitum* ...

··· abcababcababcababcab ···

Theorem (Dombi-NDG 2009)

The tiling semigroup of a one-dimensional periodic tiling with period of length m embeds into $\mathcal{P}(\mathbb{Z}_m) \rtimes_0 \text{FIM}_1$, and the subsemigroups that arise are completely determined.

- $\mathcal{P}(\mathbb{Z}_m)$ power set of subsets of \mathbb{Z}_m
- FIM₁ free monogenic inverse monoid
- ▶ $\mathsf{FIM}_1 \to \mathbb{Z} \to \mathbb{Z}_m$ so FIM_1 acts on $\mathcal{P}(\mathbb{Z}_m)$ by translation
- ▶ $\mathcal{P}(\mathbb{Z}_m) \rtimes_0 \mathsf{FIM}_1$ is the semidirect product of monoids, with $(\emptyset, w) = 0$ for all $w \in \mathsf{FIM}_1$.

Sketch proof of the theorem

 \mathcal{T} periodic with alphabet $A = \{t_1, t_2, \ldots, t_n\}$ and period $p_0p_1 \cdots p_{m-1}$. Let π be a marked string in \mathcal{T} of length ℓ . Find coords $\tau(\pi) \in \mathbb{Z}^3$ just by counting (ignore spelling!) If $\ell \geq m$, the in-letter is a unique p_j and we set $\Omega(\pi) = \{j\}$, but if $\ell < m$ then the in-letter may be p_j with j in some finite subset $\Omega(\pi)$.

Theorem

 $S(\mathcal{T})$ embedded in $\mathcal{P}(\mathbb{Z}_m) \rtimes_0 \mathsf{FIM}_1$ by $\pi \mapsto (\Omega(\pi), \tau(\pi))$.

Hypercubic tilings of \mathbb{R}^n

- McAlister-Soares 2009
- tiling \mathbb{R}^n by (coloured) regular cubic lattice
- dual graph is the Cayley graph of \mathbb{Z}^n with coloured vertices
- ► tiling is replaced by colouring map $\chi : \mathbb{Z}^n \to \Sigma$

Commutators are idempotents:

In any tiling semigroup $S(\mathcal{T})$, $u^{-1}v^{-1}uv$ is an idempotent: distance between in-tile and out-tile must be 0.

High dimensional, but vanilla

For the *n*-diml vanilla hypercubic tiling \mathcal{V} :

- all patterns have non-zero product, so 0 is removable
- ► Set $M = \ln v \langle a, b : (u^{-1}v^{-1}uv)^2 = u^{-1}v^{-1}uv(u, v \in \{a^{\pm}, b^{\pm}\}^+)$
- ► Margolis-Meakin (1989): *M* is the universal *E*-unitary inverse monoid with max group image Z²
- So have $\phi: M \to S(\mathcal{V})$

Theorem (McAlister-Soares 2009)

 $\ker \phi \text{ is not finitely generated as a congruence on } M.$

Locally full Yamamura HNN-extensions of semilattices with zero:

- *E* a semilattice, $0 \in E$: $(e)^{\downarrow} = \{x \in E : x \leq e\}$,
- Family of isomorphisms $\phi_i : (e_i)^{\downarrow} \to (f_i)^{\downarrow}$,

►
$$S = Inv_0 \langle E, t_i : t_i t_i^{-1} = e_i, t_i^{-1} t_i = f_i, t_i^{-1} x t_i = x \phi_i \ (x \le e_i) \rangle$$

Theorem (Yamamura 1999)

E(S) = E, every subgroup of S is free, and S is (strongly) F^* -inverse.

The path extension

For an *n*-diml tiling T, non-zero elements of the path extension $\Pi(T)$ are pairs (P, u) where

- $P \in S(T)$ is a marked pattern,
- ► u is a reduced path in the dual graph of T from the in-tile to the out-tile of P

Multiply componentwise: (P, u)(Q, v) = (PQ, uv), where uv is the free reduction of the concatenation of u and v (ie we work in the fundamental groupoid of the dual graph).

Multiplication in $\Pi(\mathcal{T})$

Path extension covers...

For any *n*-diml tiling T:

Theorem (Dombi-NDG 2010?)

The path extension is a strongly F^* -inverse cover of $S(\mathcal{T})$ and is isomorphic to a locally full Yamamura HNN extension of $E(S(\mathcal{T}))$. (If n = 1 the covering map is an isomorphism.)

Y-HNN ingredients

- $E = E(S(\mathcal{T})) = E(\Pi(\mathcal{T})),$
- Idempotents e_i are all possible two-tile patterns with a fixed choice of marked tile,
- Idempotents f_i choose the other tile,
- Isom $\phi: E_i \to F_i$ switches the marking.