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I don’t need to convince anyone at this conference that spending one’s time
studying consequences of the Associative Law is a way to live a good and happy
life. However, you may have found that your colleagues in neighbo(u)ring fields
tend to know next to nothing about semigroups and in fact seem not to understand
why an otherwise intelligent person like yourself would spend time studying such
things.

Well, in all honesty, there is some justification in their perception. There are
simply too many semigroups and a detailed study of all of them will invariably lead
to work that is not connected much to the rest of mathematics. Here we look for
semigroups that arise naturally in group theory and geometry.

In this talk, we will try to give you some ammunition to talk with your group
theory friends about a number of monoids that are playing an important role in
the geometry, algebra and combinatorics of Coxeter groups. We argue that the
monoids we discuss are an essential tool in understanding the group itself and its
concrete representation as a reflection group. They are necessary, because there are
some important structures, such as Bruhat order, that can not be supported by a
group itself and an associated monoid is necessary to give some algebraic tools to
aid in the study of the group and its actions.

We will look at two examples. We look at the case of finite Coxeter groups for
simplicity of exposition, but what we say is more general. As mentioned above,
every Coxeter group has a partial order, called Bruhat order associated with it. Of
course, no non-trivial finite group can be partially ordered, so there is no way to
give a finite Coxeter group W a non-trivial multiplicative partial order.

Bruhat order is defined by subword ordering of normal forms in W . Simon’s
Theorem says in Algebraic Automata Theory says that subword ordering is inti-
mately connected with finite J-trivial monoids and with monoids multiplicatively
ordered in which the identity is the minimal element, so one might guess that there
is some connection. We define a monoid M(W ) on the same underlying set of W
which is in fact J-trivial and is multiplicatively ordered by the Bruhat order. This
monoid has been discovered many times in a number of guises and we discuss its
relationships with W . One beautiful definition is that M(W ) is obtained from the
usual braid form of the Coxeter presentation of W by simply changing relations of
the form ss = 1 for Coxeter generator s to ss = s.

In his epic work on buildings and groups with BN -pairs, Tits defined a certain
operation called projection on the Coxeter complex C(W ) of W . Recall that C(W )
is the hyperplane arrangement one uses to define W concretely as a reflection group.
It was not noticed for some time, that the Tits projections turn C(W ) into a left
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regular band (LRB), that is a band in which J = L or equivalently a semigroup
satisfying the identities x2 = x and xyx = xy.

The LRB structure on C(W ) carries a great deal of geometric and combinatorial
information on W , which once again can not be seen directly from the group struc-
ture on W alone. In particular, the usual action of W on C(W ) is by automorphisms
of the LRB structure and the invariant subalgebra of the monoid algebra of C(W )
is anti-isomorphic to the Descent Algebra of W , an algebra with very important
applications to many problems. The original proof of Solomon that the Descent
Algebra was in fact an algebra (it was originally defined by taking a certain linearly
independent subset of the group algebra of W and showing that the product of any
two was a linear combination of the elements in this collection) was quite difficult,
whereas the anti-isomorphism is straightforward and clearly the invariant algebra
is in fact an algebra.

This allows us to apply the representation theory of LRBs to understand the
algebra of C(W ) and the Descent Algebra. In fact, like any band, the algebra of
C(W ) is basic over any field K, that is, its semisimple part is a direct product of
copies of K, one copy for each J-class of C(W ) and thus this is true for the Descent
Algebra as well. We compute the Quiver of an LRB algebra showing that in fact
LRBs are generalized Coxeter complexes.

All of this work is due to a number of other mathematicians whose names and
papers will be mentioned in detail during the talk.
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