Semigroups generated by idempotents and one-sided units

James East

Centre for Research in Mathematics

NBSAN 30 — Manchester — 12 July 2019

Outline

- (Partial) Brauer monoids
 - Submonoids generated by combinations of idempotents and one-/two-sided units
- Monoids
 - Lattices of submonoids
 - A semigroup of functors
 - Or: A monoid of monoidal functors on the monoidal category of monoids

• Let *n* be a positive integer.

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.

- Let n be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.

• Let
$$\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.

• Let
$$\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.

• Let
$$\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let *n* be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

- Let n be a positive integer.
- Write $X = \{1, ..., n\}$ and $X' = \{1', ..., n'\}$.
- Let $\mathcal{B}_n = \{ \text{matchings of } X \cup X' \}$

= the Brauer monoid of degree n.

Let $\alpha, \beta \in \mathcal{B}_n$.

Let $\alpha, \beta \in \mathcal{B}_n$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

Let $\alpha, \beta \in \mathcal{B}_n$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

(2) remove middle vertices

Let $\alpha, \beta \in \mathcal{B}_n$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

(2) remove middle vertices and floating components,

Let $\alpha, \beta \in \mathcal{B}_n$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

(2) remove middle vertices and floating components,

(3) smooth out resulting graph to obtain $\alpha\beta$.

Let $\alpha, \beta \in \mathcal{B}_n$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

(2) remove middle vertices and floating components,

(3) smooth out resulting graph to obtain $\alpha\beta$.

The operation is associative, so \mathcal{B}_n is a semigroup (monoid, etc).

Annals of Mathematics Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

ANNALS OF MATHEMATICS Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

Every term of this polynomial must contain each of the vectors $u(1), u(2), \cdots, u(f)$, $r(1), r(2), \cdots, r(f)$ exactly once. Therefore, J is a linear combination of the products of the form,

(38) $J = (\mathfrak{v}(1), \mathfrak{v}(2))(\mathfrak{v}(3), \mathfrak{v}(4)) \cdots (\mathfrak{v}(2f-1), \mathfrak{v}(2f)),$

where v(1), v(2), ..., v(2f) form a permutation of u(1), ..., u(f), t(1), ..., t(f). We represent u(1), u(2), ..., u(f) by f dots in a row, and t(1), t(2), ..., t(f) by f dots in a second row. We connect two dots by a line, if the inner product of the corresponding vectors appears in (38). We thus obtain symbols Sof the following type (e.g., f = 5)

To every such symbol S corresponds an invariant (38) which will be denoted by J_s . For instance, the symbol (39) corresponds to

(40) $(\mathfrak{u}(1), \mathfrak{u}(3))(\mathfrak{u}(2), \mathfrak{x}(1))(\mathfrak{u}(4), \mathfrak{x}(2))(\mathfrak{u}(5), \mathfrak{x}(5))(\mathfrak{x}(3), \mathfrak{x}(4)).$

Annals of Mathematics Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

we obtain

ANNALS OF MATHEMATICS Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

It may happen that the N elements S are linearly dependent in **B**. We consider the N symbols S as basis elements of a new algebra Γ of order N and define multiplication by (44). Then **B** is a representation of Γ (but not necessarily a (1-1)-representation). It is easy to show that Γ is associative.

Annals of Mathematics Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

Annals of Mathematics 176 (2012), 2031–2054 http://dx.doi.org/10.4007/annals.2012.176.3.12

The second fundamental theorem of invariant theory for the orthogonal group

By GUSTAV LEHRER and RUIBIN ZHANG

Annals of Mathematics Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

Annals of Mathematics 176 (2012), 2031–2054 http://dx.doi.org/10.4007/annals.2012.176.3.12

The second fundamental theorem of invariant theory for the orthogonal group

By GUSTAV LEHRER and RUIBIN ZHANG

Annals of Mathematics Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

• Brauer algebras \supseteq Temperley-Lieb algebras.

Annals of Mathematics Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

- Brauer algebras \supseteq Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.

Annals of Mathematics Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

- ► Brauer algebras ⊇ Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).

ANNALS OF MATHEMATICS Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

- ► Brauer algebras ⊇ Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).
- The above are all twisted semigroup algebras.

Brauer algebras — some history

ANNALS OF MATHEMATICS Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

- ► Brauer algebras ⊇ Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).
- The above are all twisted semigroup algebras.
- At the turn of century, the underlying "diagram semigroups" were noticed by semigroup theorists.

Brauer algebras — some history

ANNALS OF MATHEMATICS Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

BY RICHARD BRAUER

- ► Brauer algebras ⊇ Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).
- The above are all twisted semigroup algebras.
- At the turn of century, the underlying "diagram semigroups" were noticed by semigroup theorists.
- They've been studied intensively ever since.

Green's relations, maximal subgroups — Mazorchuk 1998

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002

- ► Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity Auinger 2012

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity Auinger 2012
- Pseudovarieties Auinger, Volkov, et al 2017+

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity Auinger 2012
- Pseudovarieties Auinger, Volkov, et al 2017+
- Ideals East and Gray 2017

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity Auinger 2012
- Pseudovarieties Auinger, Volkov, et al 2017+
- Ideals East and Gray 2017
- Congruences East, Mitchell, Ruškuc, Torpey 2018

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity Auinger 2012
- Pseudovarieties Auinger, Volkov, et al 2017+
- Ideals East and Gray 2017
- Congruences East, Mitchell, Ruškuc, Torpey 2018
- Sandwich semigroups Đurđev, Dolinka and East 2019+

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity Auinger 2012
- Pseudovarieties Auinger, Volkov, et al 2017+
- Ideals East and Gray 2017
- Congruences East, Mitchell, Ruškuc, Torpey 2018
- Sandwich semigroups Đurđev, Dolinka and East 2019+
- Other diagram semigroups/categories many authors

- Green's relations, maximal subgroups Mazorchuk 1998
- Automorphisms and endomorphisms Mazorchuk 2002
- Presentations Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity Auinger 2012
- Pseudovarieties Auinger, Volkov, et al 2017+
- Ideals East and Gray 2017
- Congruences East, Mitchell, Ruškuc, Torpey 2018
- Sandwich semigroups Đurđev, Dolinka and East 2019+
- Other diagram semigroups/categories many authors
- Inspiration/techniques taken from transformation semigroups

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\alpha\beta \notin \mathcal{B}_{\mathbb{N}}!$

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\blacktriangleright \ \alpha\beta \not\in \mathcal{B}_{\mathbb{N}}!$
- ► So B_N is not a semigroup!

Infinite Brauer monoids DON'T EXIST!

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\blacktriangleright \ \alpha\beta \not\in \mathcal{B}_{\mathbb{N}}!$
- ► So B_N is not a semigroup!

Infinite Brauer monoids DON'T EXIST!

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\alpha\beta \notin \mathcal{B}_{\mathbb{N}}!$
- So $\mathcal{B}_{\mathbb{N}}$ is not a semigroup!
- But $\alpha\beta \in \mathcal{PB}_{\mathbb{N}}$, the partial Brauer monoid.

▶ Let X be a set.

- ▶ Let X be a set.
- Fix a disjoint copy $X' = \{x' : x \in X\}$.

- Let X be a set.
- Fix a disjoint copy $X' = \{x' : x \in X\}$.

- Let X be a set.
- Fix a disjoint copy $X' = \{x' : x \in X\}$.
- Let $\mathcal{PB}_X = \{ \text{partial matchings of } X \cup X' \}$

- Let X be a set.
- Fix a disjoint copy $X' = \{x' : x \in X\}$.
- Let $\mathcal{PB}_X = \{ \text{partial matchings of } X \cup X' \}$

- Let X be a set.
- Fix a disjoint copy $X' = \{x' : x \in X\}$.
- Let $\mathcal{PB}_X = \{ \text{partial matchings of } X \cup X' \}$

= the partial Brauer monoid over X.

Let $\alpha, \beta \in \mathcal{PB}_X$.

Let $\alpha, \beta \in \mathcal{PB}_X$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

Let $\alpha, \beta \in \mathcal{PB}_X$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

(2) remove middle vertices

Let $\alpha, \beta \in \mathcal{PB}_X$. To calculate $\alpha\beta$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,

Let $\alpha, \beta \in \mathcal{PB}_X$. To calculate $\alpha\beta$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out (and prune) resulting graph to obtain $\alpha\beta$.

Partial Brauer monoids — product in \mathcal{PB}_X

Let $\alpha, \beta \in \mathcal{PB}_X$. To calculate $\alpha\beta$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out (and prune) resulting graph to obtain $\alpha\beta$.

• The operation is associative, so \mathcal{PB}_X is a semigroup (monoid, etc).

Partial Brauer monoids — product in \mathcal{PB}_X

Let $\alpha, \beta \in \mathcal{PB}_X$. To calculate $\alpha\beta$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out (and prune) resulting graph to obtain $\alpha\beta$.

- The operation is associative, so \mathcal{PB}_X is a semigroup (monoid, etc).
- No problems with infinite X.

• \mathcal{PB}_X has an identity element 1.

• \mathcal{PB}_X has an identity element 1.

- \mathcal{PB}_X has an identity element 1.
- Units of \mathcal{PB}_X are permutations.

- \mathcal{PB}_X has an identity element 1.
- Units of \mathcal{PB}_X are permutations.

- \mathcal{PB}_X has an identity element 1.
- Units of \mathcal{PB}_X are permutations.

- \mathcal{PB}_X has an identity element 1.
- Units of \mathcal{PB}_X are permutations. So $\mathbb{G}(\mathcal{PB}_X) = \mathcal{S}_X$.

- \mathcal{PB}_X has an identity element 1.
- Units of \mathcal{PB}_X are permutations. So $\mathbb{G}(\mathcal{PB}_X) = \mathcal{S}_X$.

Idempotents are harder to describe.

- \mathcal{PB}_X has an identity element 1.
- Units of \mathcal{PB}_X are permutations. So $\mathbb{G}(\mathcal{PB}_X) = \mathcal{S}_X$.

- Idempotents are harder to describe.
- Dolinka, East, Evangelou, FitzGerald, Ham, Hyde, Loughlin (JCTA 2015).

- \mathcal{PB}_X has an identity element 1.
- Units of \mathcal{PB}_X are permutations. So $\mathbb{G}(\mathcal{PB}_X) = \mathcal{S}_X$.

- Idempotents are harder to describe.
- Dolinka, East, Evangelou, FitzGerald, Ham, Hyde, Loughlin (JCTA 2015).
 Next few pages:
- Idempotents and one-sided units in infinite partial Brauer monoids
 - J. Algebra 534 (2019) 427–482

Theorem (inspired by Howie 1966)

Let $\mathbb{E}(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \rangle$. Then

 $\mathbb{E}(\mathcal{PB}_X) = \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \le 1 \text{ and } \mathsf{sh}(\alpha) = 0 \right\}$

 $\cup \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \ge 2 \text{ and } \mathsf{supp}(\alpha) < \aleph_0 \right\}$

 $\cup \big\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) = \mathsf{codef}(\alpha) \ge \mathsf{max}(\aleph_0, \mathsf{sh}(\alpha)) \big\}.$

Theorem (inspired by Howie 1966)

Let $\mathbb{E}(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \rangle$. Then

$$\mathbb{E}(\mathcal{PB}_X) = \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \le 1 \text{ and } \mathsf{sh}(\alpha) = 0 \right\}$$

 $\cup \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \ge 2 \text{ and } \mathsf{supp}(\alpha) < \aleph_0 \right\}$

 $\cup \{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) = \mathsf{codef}(\alpha) \ge \mathsf{max}(\aleph_0, \mathsf{sh}(\alpha)) \}.$

• $def(\alpha) = |X \setminus dom(\alpha)|$

Theorem (inspired by Howie 1966)

Let $\mathbb{E}(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \rangle$. Then

$$\mathbb{E}(\mathcal{PB}_X) = \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \le 1 \text{ and } \mathsf{sh}(\alpha) = 0 \right\}$$

 $\cup \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \ge 2 \text{ and } \mathsf{supp}(\alpha) < \aleph_0 \right\}$

 $\cup \{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) = \mathsf{codef}(\alpha) \ge \mathsf{max}(\aleph_0, \mathsf{sh}(\alpha)) \}.$

• def(α) = |X \ dom(α)| and codef(α) = |X \ codom(α)|,

Theorem (inspired by Howie 1966)

Let $\mathbb{E}(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \rangle$. Then

$$\mathbb{E}(\mathcal{PB}_X) = \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \le 1 \text{ and } \mathsf{sh}(\alpha) = 0 \right\}$$

 $\cup \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \ge 2 \text{ and } \mathsf{supp}(\alpha) < \aleph_0 \right\}$

 $\cup \big\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) = \mathsf{codef}(\alpha) \ge \mathsf{max}(\aleph_0, \mathsf{sh}(\alpha)) \big\}.$

• def(α) = |X \ dom(α)| and codef(α) = |X \ codom(α)|,

•
$$\mathsf{sh}(\alpha) = |x \in \mathsf{dom}(\alpha) : x\alpha \neq x|,$$

Theorem (inspired by Howie 1966)

Let $\mathbb{E}(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \rangle$. Then

$$\mathbb{E}(\mathcal{PB}_X) = \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \le 1 \text{ and } \mathsf{sh}(\alpha) = 0 \right\}$$

 $\cup \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \ge 2 \text{ and } \mathsf{supp}(\alpha) < \aleph_0 \right\}$

 $\cup \big\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) = \mathsf{codef}(\alpha) \ge \mathsf{max}(\aleph_0, \mathsf{sh}(\alpha)) \big\}.$

▶ def(α) = |X \ dom(α)| and codef(α) = |X \ codom(α)|,

•
$$\mathsf{sh}(\alpha) = |x \in \mathsf{dom}(\alpha) : x\alpha \neq x|,$$

•
$$supp(\alpha) = sh(\alpha) + def(\alpha) = sh(\alpha) + codef(\alpha)$$
.

Theorem (inspired by Howie 1966)

Let $\mathbb{E}(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \rangle$. Then

$$\mathbb{E}(\mathcal{PB}_X) = \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \le 1 \text{ and } \mathsf{sh}(\alpha) = 0 \right\}$$

 $\cup \left\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) \ge 2 \text{ and } \mathsf{supp}(\alpha) < \aleph_0 \right\}$

 $\cup \big\{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) = \mathsf{codef}(\alpha) \ge \mathsf{max}(\aleph_0, \mathsf{sh}(\alpha)) \big\}.$

Theorem (inspired by Fountin and Lewin 1993)

Let
$$\mathbb{F}(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \cup \mathbb{G}(\mathcal{PB}_X) \rangle$$
. Then

 $\mathbb{F}(\mathcal{PB}_X) = \{ \alpha \in \mathcal{PB}_X : \mathsf{def}(\alpha) = \mathsf{codef}(\alpha) \}.$

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

• For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$.

- For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$.
- In fact, $\mathcal{PB}_X = \alpha \mathcal{S}_X \beta$.

- For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$.
- In fact, $\mathcal{PB}_X = \alpha \mathcal{S}_X \beta$.
- rank $(\mathcal{PB}_X : \mathcal{S}_X) = 2.$

- For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$.
- In fact, $\mathcal{PB}_X = \alpha \mathcal{S}_X \beta$.
- rank $(\mathcal{PB}_X : \mathcal{S}_X) = 2.$
- Any generating pair for \mathcal{PB}_X modulo \mathcal{S}_X looks like α, β .

- For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$.
- In fact, $\mathcal{PB}_X = \alpha \mathcal{S}_X \beta$.
- rank $(\mathcal{PB}_X : \mathcal{S}_X) = 2.$
- Any generating pair for \mathcal{PB}_X modulo \mathcal{S}_X looks like α, β .

•
$$\mathcal{PB}_X = \langle \mathcal{B}_X \rangle$$

- For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$.
- In fact, $\mathcal{PB}_X = \alpha \mathcal{S}_X \beta$.
- rank $(\mathcal{PB}_X : \mathcal{S}_X) = 2.$
- Any generating pair for \mathcal{PB}_X modulo \mathcal{S}_X looks like α, β .

$$\blacktriangleright \mathcal{PB}_X = \langle \mathcal{B}_X \rangle = \mathcal{B}_X^2$$

- For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathbb{G}(\mathcal{PB}_X), \alpha, \beta \rangle$.
- In fact, $\mathcal{PB}_X = \alpha \mathbb{G}(\mathcal{PB}_X)\beta$.
- rank $(\mathcal{PB}_X : \mathbb{G}(\mathcal{PB}_X)) = 2.$
- Any generating pair for \mathcal{PB}_X modulo $\mathbb{G}(\mathcal{PB}_X)$ looks like α, β .

$$\blacktriangleright \mathcal{PB}_X = \langle \mathcal{B}_X \rangle = \mathcal{B}_X^2$$

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{PB}_X$ as below, $\mathcal{PB}_X = \langle \mathbb{E}(\mathcal{PB}_X), \alpha, \beta \rangle$.
- In fact, $\mathcal{PB}_X = \alpha \mathbb{E}(\mathcal{PB}_X)\beta$.
- rank $(\mathcal{PB}_X : \mathbb{E}(\mathcal{PB}_X)) = 2.$
- Any generating pair for \mathcal{PB}_X modulo $\mathbb{E}(\mathcal{PB}_X)$ looks like α, β .

 $\blacktriangleright \mathcal{PB}_X = \langle \mathcal{B}_X \rangle = \mathcal{B}_X^2.$

• Consider α from the theorem(s).

- Consider α from the theorem(s).
- Then $\alpha\beta = 1$.

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1.$

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1$. So $\langle \alpha, \beta \rangle$ is bicyclic.

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1$. So $\langle \alpha, \beta \rangle$ is bicyclic.
- α and β are one-sided units.

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1$. So $\langle \alpha, \beta \rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1$. So $\langle \alpha, \beta \rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique:

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1$. So $\langle \alpha, \beta \rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique: $1 = \alpha \beta = \alpha \gamma$

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1$. So $\langle \alpha, \beta \rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique: $1 = \alpha\beta = \alpha\gamma = \alpha\delta$

- Consider α from the theorem(s).
- Then $\alpha\beta = 1...$ but $\beta\alpha \neq 1$. So $\langle \alpha, \beta \rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique: $1 = \alpha\beta = \alpha\gamma = \alpha\delta = \alpha\varepsilon...$

• $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

•
$$\mathbb{G}_R(\mathcal{PB}_X) = \{ \alpha \in \mathcal{PB}_X : \operatorname{dom}(\alpha) = X \}$$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

•
$$\mathbb{G}_R(\mathcal{PB}_X) = \{ \alpha \in \mathcal{PB}_X : \operatorname{dom}(\alpha) = X \}$$

= $\{ \alpha \in \mathcal{PB}_X : \operatorname{def}(\alpha) = 0 \},$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

•
$$\mathbb{G}_R(\mathcal{PB}_X) = \{ \alpha \in \mathcal{PB}_X : \operatorname{dom}(\alpha) = X \}$$

= $\{ \alpha \in \mathcal{PB}_X : \operatorname{def}(\alpha) = 0 \},$
• $\mathbb{G}_L(\mathcal{PB}_X) = \{ \alpha \in \mathcal{PB}_X : \operatorname{codom}(\alpha) = X \}$
= $\{ \alpha \in \mathcal{PB}_X : \operatorname{codef}(\alpha) = 0 \},$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

Theorem

•
$$\mathbb{G}_{R}(\mathcal{PB}_{X}) = \{ \alpha \in \mathcal{PB}_{X} : \operatorname{dom}(\alpha) = X \}$$

= $\{ \alpha \in \mathcal{PB}_{X} : \operatorname{def}(\alpha) = 0 \},$
• $\mathbb{G}_{L}(\mathcal{PB}_{X}) = \{ \alpha \in \mathcal{PB}_{X} : \operatorname{codom}(\alpha) = X \}$

$$= \{ \alpha \in \mathcal{PB}_X : \mathsf{codef}(\alpha) = \mathsf{0} \},\$$

 $\blacktriangleright \mathcal{PB}_X = \langle \mathbb{G}_L(\mathcal{PB}_X) \cup \mathbb{G}_R(\mathcal{PB}_X) \rangle = \mathbb{G}_R(\mathcal{PB}_X)\mathbb{G}_L(\mathcal{PB}_X)$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

Theorem

• $\mathbb{G}_{R}(\mathcal{PB}_{X}) = \{ \alpha \in \mathcal{PB}_{X} : \operatorname{dom}(\alpha) = X \}$ $= \{ \alpha \in \mathcal{PB}_{X} : \operatorname{def}(\alpha) = 0 \},$ • $\mathbb{G}_{L}(\mathcal{PB}_{X}) = \{ \alpha \in \mathcal{PB}_{X} : \operatorname{codom}(\alpha) = X \}$ $= \{ \alpha \in \mathcal{PB}_{X} : \operatorname{codef}(\alpha) = 0 \},$ • $\mathcal{PB}_{X} = \langle \mathbb{G}_{L}(\mathcal{PB}_{X}) \cup \mathbb{G}_{R}(\mathcal{PB}_{X}) \rangle = \mathbb{G}_{R}(\mathcal{PB}_{X}) \mathbb{G}_{L}(\mathcal{PB}_{X})$

 $= \mathbb{G}_R(\mathcal{B}_X)\mathbb{G}_L(\mathcal{B}_X).$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

• rank
$$(\mathcal{PB}_X : \mathbb{G}(\mathcal{PB}_X)) = 2$$
,

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

- rank $(\mathcal{PB}_X : \mathbb{G}(\mathcal{PB}_X)) = 2$,
- rank $(\mathcal{PB}_X : \mathbb{G}_L(\mathcal{PB}_X)) = 1$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

- rank $(\mathcal{PB}_X : \mathbb{G}(\mathcal{PB}_X)) = 2$,
- $\operatorname{rank}(\mathcal{PB}_X : \mathbb{G}_L(\mathcal{PB}_X)) = 1 = \operatorname{rank}(\mathcal{PB}_X : \mathbb{G}_R(\mathcal{PB}_X)),$

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

- rank $(\mathcal{PB}_X : \mathbb{G}(\mathcal{PB}_X)) = 2$,
- ▶ rank($\mathcal{PB}_X : \mathbb{G}_L(\mathcal{PB}_X)$) = 1 = rank($\mathcal{PB}_X : \mathbb{G}_R(\mathcal{PB}_X)$),
- rank($\mathbb{G}_L(\mathcal{PB}_X)$: $\mathbb{G}(\mathcal{PB}_X)$)

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

Theorem

- $\operatorname{rank}(\mathcal{PB}_X : \mathbb{G}(\mathcal{PB}_X)) = 2$,
- ▶ $\operatorname{rank}(\mathcal{PB}_X : \mathbb{G}_L(\mathcal{PB}_X)) = 1 = \operatorname{rank}(\mathcal{PB}_X : \mathbb{G}_R(\mathcal{PB}_X)),$
- rank($\mathbb{G}_L(\mathcal{PB}_X)$: $\mathbb{G}(\mathcal{PB}_X)$) = 1 + ρ ,

where ρ is the number of infinite cardinals $\aleph_0 \leq \mu \leq |X|$.

- $\mathbb{G}(\mathcal{PB}_X) = \{ \text{units of } \mathcal{PB}_X \} = \mathcal{S}_X,$
- $\mathbb{G}_L(\mathcal{PB}_X) = \{ \text{left units of } \mathcal{PB}_X \},$
- $\mathbb{G}_R(\mathcal{PB}_X) = \{ \text{right units of } \mathcal{PB}_X \}.$

Theorem

- $\operatorname{rank}(\mathcal{PB}_X : \mathbb{G}(\mathcal{PB}_X)) = 2$,
- ▶ $\operatorname{rank}(\mathcal{PB}_X : \mathbb{G}_L(\mathcal{PB}_X)) = 1 = \operatorname{rank}(\mathcal{PB}_X : \mathbb{G}_R(\mathcal{PB}_X)),$
- rank($\mathbb{G}_L(\mathcal{PB}_X) : \mathbb{G}(\mathcal{PB}_X)$) = 1 + ρ ,

where ρ is the number of infinite cardinals $\aleph_0 \leq \mu \leq |X|$.

Generators modulo these submonoids are classified.

Partial Brauer monoids — submonoids

•
$$\mathbb{F}_L(\mathcal{PB}_X) = \langle E(\mathcal{PB}_X) \cup \mathbb{G}_L(\mathcal{PB}_X) \rangle$$
, etc.

Partial Brauer monoids — submonoids

•
$$\mathcal{F}_X^L = \mathbb{F}_L(\mathcal{PB}_X)$$
, etc.

Partial Brauer monoids — submonoids

Journal of Algebra 534 (2019) 427-482

Idempotents and one-sided units in infinite partial Brauer monoids

James East

Centre for Research in Mathematics; School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

Lemma 4.1	Description of \mathcal{G}_X^L and \mathcal{G}_X
Theorem 5.8	Description of \mathcal{E}_X
Theorem 6.1	Description of \mathcal{F}_X
Theorem 6.6	Description of \mathcal{F}^L_X
Theorem 4.7	$\operatorname{rank}(\mathcal{PB}_X:\mathcal{G}_X)=2$
Theorem 4.9	$\operatorname{rank}(\mathcal{PB}_X : \mathcal{G}_X^L) = 1$
Theorem 5.12	$\operatorname{rank}(\mathcal{PB}_X:\mathcal{E}_X)=2$
Theorem 6.3	$\operatorname{rank}(\mathcal{PB}_X : \mathcal{F}_X) = 2$
Theorem 7.1	$\operatorname{rank}(\mathcal{PB}_X:\mathcal{F}_X^L)=1$

Theorem 7.6	$\operatorname{rank}(\mathcal{F}_X^L:\mathcal{F}_X) = 1 + \rho$
Theorem 7.7	$\operatorname{rank}(\mathcal{F}_X^L : \mathcal{E}_X) = 2^{ X }$
Theorem 7.14	$\operatorname{rank}(\mathcal{F}_X^L : \mathcal{G}_X^L) = 2 + 2\rho$
Theorem 7.17	$\operatorname{rank}(\mathcal{F}_X^L:\mathcal{G}_X)=3+3\rho$
Theorem 6.5	$\operatorname{rank}(\mathcal{F}_X : \mathcal{E}_X) = 2^{ X }$
Theorem 6.16	$\operatorname{rank}(\mathcal{F}_X:\mathcal{G}_X)=2+2\rho$
Theorem 4.12	$\operatorname{rank}(\mathcal{G}_X^L:\mathcal{G}_X) = 2 + 2\rho$
Theorem 8.3	Bergman/Sierpiński in \mathcal{PB}_X
Theorem 8.8	Bergman/Sierpiński in all other monoids

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

 \mathcal{PB}_X has the Bergman property:

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

 \mathcal{PB}_X has the Bergman property:

the length function is bounded for any generating set.

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

 \mathcal{PB}_X has the Bergman property:

the length function is bounded for any generating set.

Theorem (inspired by Hyde and Péresse)

For infinite X, \mathcal{PB}_X has Sierpiński rank 2:

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

 \mathcal{PB}_X has the Bergman property:

the length function is bounded for any generating set.

Theorem (inspired by Hyde and Péresse)

For infinite X, \mathcal{PB}_X has Sierpiński rank 2:

► any countable subset of PB_X is contained in a 2-generated subsemigroup.

Theorem

For infinite X:

•
$$SR(\mathcal{E}_X) = \infty$$
,

Theorem

For infinite X:

• $\mathsf{SR}(\mathcal{E}_X) = \infty$,

►
$$SR(\mathcal{G}_X^L) = SR(\mathcal{G}_X^R) = SR(\mathcal{F}_X),$$

= $\begin{cases} 2n+6 & \text{if } |X| = \aleph_n, \text{ where } n \in \mathbb{N} \\ \infty & \text{if } |X| \ge \aleph_\omega, \end{cases}$

Theorem

For infinite X:

- $\mathsf{SR}(\mathcal{E}_X) = \infty$,
- $SR(\mathcal{G}_X^L) = SR(\mathcal{G}_X^R) = SR(\mathcal{F}_X),$

$$= \begin{cases} 2n+6 & \text{if } |X| = \aleph_n, \text{ where } n \in \mathbb{N} \\ \infty & \text{if } |X| \ge \aleph_\omega, \end{cases}$$

►
$$\mathsf{SR}(\mathcal{F}^L_X) = \mathsf{SR}(\mathcal{F}^R_X) = \begin{cases} 3n+8 & \text{if } |X| = \aleph_n, \text{ where } n \in \mathbb{N} \\ \infty & \text{if } |X| \ge \aleph_\omega. \end{cases}$$

Theorem

For infinite X:

• $SR(\mathcal{E}_X) = \infty$,

•
$$\operatorname{SR}(\mathcal{G}_X^L) = \operatorname{SR}(\mathcal{G}_X^R) = \operatorname{SR}(\mathcal{F}_X),$$

$$=\begin{cases} 2n+6 & \text{if } |X|=\aleph_n, \text{ where } n\in\mathbb{N}\\ \infty & \text{if } |X|\geq\aleph_\omega, \end{cases}$$

►
$$\mathsf{SR}(\mathcal{F}^L_X) = \mathsf{SR}(\mathcal{F}^R_X) = \begin{cases} 3n+8 & \text{if } |X| = \aleph_n, \text{ where } n \in \mathbb{N} \\ \infty & \text{if } |X| \ge \aleph_\omega. \end{cases}$$

▶ None of $\mathcal{E}_X, \mathcal{G}_X^L, \mathcal{G}_X^R, \mathcal{F}_X, \mathcal{F}_X^L, \mathcal{F}_X^R$ have the Bergman property.

${\sf Monoids}$

For a monoid M, let

•
$$\mathbb{E}(M) = \langle E(M) \rangle$$

For a monoid M, let

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$

For a monoid M, let

• $\mathbb{E}(M) = \langle E(M) \rangle$

• $\mathbb{G}_L(M) = \{ \text{left units of } M \}$

• $\mathbb{G}(M) = \{ \text{units of } M \}$

For a monoid M, let

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

For a monoid M, let

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$
- $\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$
- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$

•
$$\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

•
$$\mathbb{G}_{LR}(M) = \langle \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$$

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$
- $\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$
- $\mathbb{F}_L(M) = \langle E(M) \cup \mathbb{G}_L(M) \rangle$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

•
$$\mathbb{G}_{LR}(M) = \langle \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$$

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$
- $\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$
- $\mathbb{F}_L(M) = \langle E(M) \cup \mathbb{G}_L(M) \rangle$
- $\mathbb{F}_R(M) = \langle E(M) \cup \mathbb{G}_R(M) \rangle$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

•
$$\mathbb{G}_{LR}(M) = \langle \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$$

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$
- $\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$
- $\mathbb{F}_L(M) = \langle E(M) \cup \mathbb{G}_L(M) \rangle$
- $\mathbb{F}_R(M) = \langle E(M) \cup \mathbb{G}_R(M) \rangle$
- $\mathbb{F}_{LR}(M) = \langle E(M) \cup \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

•
$$\mathbb{G}_{LR}(M) = \langle \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$$

For a monoid M, let

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$
- $\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$
- $\mathbb{F}_L(M) = \langle E(M) \cup \mathbb{G}_L(M) \rangle$
- $\mathbb{F}_R(M) = \langle E(M) \cup \mathbb{G}_R(M) \rangle$
- $\mathbb{F}_{LR}(M) = \langle E(M) \cup \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$

 $\blacktriangleright \ \mathbb{I}(M) = M$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

•
$$\mathbb{G}_{LR}(M) = \langle \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$$

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$

•
$$\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$$

- $\mathbb{F}_L(M) = \langle E(M) \cup \mathbb{G}_L(M) \rangle$
- $\mathbb{F}_R(M) = \langle E(M) \cup \mathbb{G}_R(M) \rangle$
- $\mathbb{F}_{LR}(M) = \langle E(M) \cup \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$
- $\mathbb{I}(M) = M$
- $\mathbb{O}(M) = \{1\}$

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

•
$$\mathbb{G}_{LR}(M) = \langle \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$$

- $\mathbb{E}(M) = \langle E(M) \rangle$
- $\mathbb{G}(M) = \{ \text{units of } M \}$

•
$$\mathbb{F}(M) = \langle E(M) \cup \mathbb{G}(M) \rangle$$

- $\mathbb{F}_L(M) = \langle E(M) \cup \mathbb{G}_L(M) \rangle$
- $\mathbb{F}_R(M) = \langle E(M) \cup \mathbb{G}_R(M) \rangle$
- $\blacktriangleright \mathbb{F}_{LR}(M) = \langle E(M) \cup \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$
- $\blacktriangleright \mathbb{I}(M) = M$
- $\mathbb{O}(M) = \{1\}$ All are submonoids of M.

- $\mathbb{G}_L(M) = \{ \text{left units of } M \}$
- $\mathbb{G}_R(M) = \{ \text{right units of } M \}$

•
$$\mathbb{G}_{LR}(M) = \langle \mathbb{G}_L(M) \cup \mathbb{G}_R(M) \rangle$$

► WT \mathbb{F}_{LR} ?

- ► WT \mathbb{F}_{LR} ?
- Earlier theorem: $\mathcal{PB}_X = \langle \mathbb{G}_L(\mathcal{PB}_X) \cup \mathbb{G}_R(\mathcal{PB}_X) \rangle$.

- ► WT \mathbb{F}_{LR} ?
- Earlier theorem: $\mathcal{PB}_X = \mathbb{G}_{LR}(\mathcal{PB}_X)$

► WT \mathbb{F}_{LR} ?

• Earlier theorem: $\mathcal{PB}_X = \mathbb{G}_{LR}(\mathcal{PB}_X) = \mathbb{F}_{LR}(\mathcal{PB}_X)!$

• Let \mathcal{M} be the (monoidal) category of monoids.

- \blacktriangleright Let $\mathcal M$ be the (monoidal) category of monoids.
- $\mathbb{E} : \mathcal{M} \to \mathcal{M} : \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.

- \blacktriangleright Let $\mathcal M$ be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

- \blacktriangleright Let $\mathcal M$ be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_L(\mathbb{G}_L(M)) =$

- \blacktriangleright Let $\mathcal M$ be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

• Quiz:
$$\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$$

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

• Quiz:
$$\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$$
 $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

• Quiz:
$$\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$$
 $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$

• Quiz: $\mathbb{E}(\mathbb{E}(M)) =$

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

• Quiz:
$$\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$$

$$\ldots \mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$$

• Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

- \blacktriangleright Let $\mathcal M$ be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

• Quiz:
$$\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$$
 $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$

- ► Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.
- $\blacktriangleright \mathbb{E}(\mathbb{G}(M))$

- \blacktriangleright Let $\mathcal M$ be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

• Quiz:
$$\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$$
 $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}$.

- Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M)) = \{1\}$

- \blacktriangleright Let $\mathcal M$ be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

• Quiz:
$$\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$$
 $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}$.

► Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.

•
$$\mathbb{E}(\mathbb{G}(M)) = \{1\} = \mathbb{G}(\mathbb{E}(M)).$$

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$ $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$
- ► Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.
- $\blacktriangleright \mathbb{E}(\mathbb{G}(M)) = \{1\} = \mathbb{G}(\mathbb{E}(M)). \qquad \dots \mathbb{E} \circ \mathbb{G} = \mathbb{G} \circ \mathbb{E} = \mathbb{O}.$

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$ $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}$.
- ► Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.

 $\dots \mathbb{E} \circ \mathbb{G} = \mathbb{G} \circ \mathbb{E} = \mathbb{O}.$

- $\mathbb{E}(\mathbb{G}(M)) = \{1\} = \mathbb{G}(\mathbb{E}(M)).$
- $\blacktriangleright \ \mathbb{X} \circ \mathbb{I} = \mathbb{X} = \mathbb{I} \circ \mathbb{X}$

- ▶ Let *M* be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$ $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$
- Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.
- $\blacktriangleright \mathbb{E}(\mathbb{G}(M)) = \{1\} = \mathbb{G}(\mathbb{E}(M)). \qquad \dots \mathbb{E} \circ \mathbb{G} = \mathbb{G} \circ \mathbb{E} = \mathbb{O}.$
- $X \circ I = X = I \circ X$ and $X \circ O = O = O \circ X$ for any X.

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$ $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$
- Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.
- $\blacktriangleright \mathbb{E}(\mathbb{G}(M)) = \{1\} = \mathbb{G}(\mathbb{E}(M)). \qquad \dots \mathbb{E} \circ \mathbb{G} = \mathbb{G} \circ \mathbb{E} = \mathbb{O}.$
- $X \circ I = X = I \circ X$ and $X \circ O = O = O \circ X$ for any X.
- So we have a monoid of functors,

 $\mathscr{F} = \{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_L, \mathbb{G}_R, \mathbb{G}_{LR}, \mathbb{F}, \mathbb{F}_L, \mathbb{F}_R, \mathbb{F}_{LR}, \mathbb{I}\}...$

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \to \mathcal{M}: \mathcal{M} \mapsto \mathbb{E}(\mathcal{M})$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \to \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_L(\mathbb{G}_L(M)) = \mathbb{G}(M)!$ $\mathbb{G}_L \circ \mathbb{G}_L = \mathbb{G}.$
- ► Quiz: $\mathbb{E}(\mathbb{E}(M)) = \mathbb{E}(M)!$ $\mathbb{E} \circ \mathbb{E} = \mathbb{E}$.
- $\blacktriangleright \mathbb{E}(\mathbb{G}(M)) = \{1\} = \mathbb{G}(\mathbb{E}(M)). \qquad \dots \mathbb{E} \circ \mathbb{G} = \mathbb{G} \circ \mathbb{E} = \mathbb{O}.$
- $X \circ I = X = I \circ X$ and $X \circ O = O = O \circ X$ for any X.
- So we have a monoid of functors,

 $\mathscr{F} = \{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_L, \mathbb{G}_R, \mathbb{G}_{LR}, \mathbb{F}, \mathbb{F}_L, \mathbb{F}_R, \mathbb{F}_{LR}, \mathbb{I}\}..... \text{ right} ?$

0	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}
\bigcirc	\bigcirc	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
$\mathbb E$	\mathbb{O}	$\mathbb E$	\mathbb{O}	\mathbb{O}	\mathbb{O}		$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$
\mathbb{G}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_L
\mathbb{G}_{R}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
\mathbb{G}_{LR}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}_{LR}
\mathbb{F}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}		\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}		\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\bigcirc	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}		\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
\mathbb{F}_{LR}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{F}_{LR}
\mathbb{I}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_{R}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_L	\mathbb{F}_R	\mathbb{F}_{LR}	\mathbb{I}

0	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}
\mathbb{O}	\bigcirc	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
$\mathbb E$	\bigcirc	$\mathbb E$	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$
\mathbb{G}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_L
\mathbb{G}_{R}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
\mathbb{G}_{LR}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}_{LR}
\mathbb{F}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	₽_	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\bigcirc	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
\mathbb{F}_{LR}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{F}_{LR}
\mathbb{I}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_{R}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}

0	\square	\mathbb{E}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}
\bigcirc	\bigcirc	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
$\mathbb E$	\mathbb{O}	$\mathbb E$	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$
\mathbb{G}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_L
\mathbb{G}_{R}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_R	\mathbb{G}_{R}
\mathbb{G}_{LR}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}_{LR}
\mathbb{F}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	₽_	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\bigcirc	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
\mathbb{F}_{LR}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{F}_{LR}
${\mathbb I}$	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_L	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}

Are these really new functors?

0	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}
\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\bigcirc	\mathbb{O}
$\mathbb E$	\mathbb{O}	$\mathbb E$	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_L
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
\mathbb{G}_{LR}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}_{LR}
\mathbb{F}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	₽_	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
\mathbb{F}_{LR}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{F}_{LR}
\mathbb{I}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_L	\mathbb{F}_R	\mathbb{F}_{LR}	\mathbb{I}

- Are these really new functors?
- Now do we have a monoid of functors,

 $\mathscr{F} = \{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_L, \mathbb{G}_R, \mathbb{G}_{LR}, \mathbb{F}, \mathbb{F}_L, \mathbb{F}_R, \mathbb{F}_{LR}, \mathbb{Q}, \mathbb{P}, \mathbb{P}_L, \mathbb{P}_R, \mathbb{I}\}?$

0	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	I
\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
$\mathbb E$	\mathbb{O}	$\mathbb E$	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_L
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
\mathbb{G}_{LR}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}_{LR}
\mathbb{F}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	₽_	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
\mathbb{F}_{LR}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{F}_{LR}
\mathbb{I}	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_{R}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_R	\mathbb{F}_{LR}	\mathbb{I}

Are these really new functors?

..... Yes!

Now do we have a monoid of functors,

 $\mathscr{F} = \{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_L, \mathbb{G}_R, \mathbb{G}_{LR}, \mathbb{F}, \mathbb{F}_L, \mathbb{F}_R, \mathbb{F}_{LR}, \mathbb{Q}, \mathbb{P}, \mathbb{P}_L, \mathbb{P}_R, \mathbb{I}\}?$
Composing functors

0	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}
\bigcirc	\bigcirc	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
$\mathbb E$	\mathbb{O}	$\mathbb E$	\mathbb{O}	\mathbb{O}	\mathbb{O}	Q	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$	$\mathbb E$
\mathbb{G}	\bigcirc	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_L
\mathbb{G}_{R}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
\mathbb{G}_{LR}	\square	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}_{LR}
\mathbb{F}	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\bigcirc	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	₽∟	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\bigcirc	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
\mathbb{F}_{LR}	\bigcirc	$\mathbb E$	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{F}_{LR}
${\mathbb I}$	\square	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_L	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{I}

The monoid ${\mathscr F}$

0		\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}_{L}	\mathbb{P}_{R}	\mathbb{I}
O		\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
\mathbb{E}		\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	Q	\mathbb{E}	$\mathbb E$	$\mathbb E$	\mathbb{E}	Q	Q	Q	Q	\mathbb{E}
\mathbb{G}		\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L		\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L
\mathbb{G}_{R}		\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_R	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_R	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_R
\mathbb{G}_L	R	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}
\mathbb{F}		\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}
\mathbb{F}_{L}		\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{L}
\mathbb{F}_{R}		\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{R}
\mathbb{F}_{LI}	R	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{LR}
\mathbb{Q}		\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	\mathbb{O}	\mathbb{O}	\bigcirc	Q	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}
\mathbb{P}		\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{G}	\mathbb{G}	G	\mathbb{P}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}
\mathbb{P}_{L}		\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{G}	\mathbb{G}	G	\mathbb{P}_{L}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}
\mathbb{P}_{R}		\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{G}	\mathbb{G}	G	\mathbb{P}_{R}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}
I		\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_{R}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}_L	\mathbb{P}_{R}	\mathbb{I}

The monoid ${\mathscr F}$

	0	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_{R}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_R	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}_{L}	\mathbb{P}_{R}	I
-	O	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
	\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	Q	\mathbb{E}	$\mathbb E$	\mathbb{E}	\mathbb{E}	\mathbb{Q}	\mathbb{Q}	Q	\mathbb{Q}	\mathbb{E}
	\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
	\mathbb{G}_L	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L
	\mathbb{G}_R	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_R	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}
	\mathbb{G}_{LR}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}
	\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}
	\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{L}
	\mathbb{F}_R	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{R}
	\mathbb{F}_{LR}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{LR}
	Q	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	\mathbb{O}	\mathbb{O}	\bigcirc	Q	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}
	\mathbb{P}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}
	\mathbb{P}_L	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}
	\mathbb{P}_R	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}
	I	\mathbb{O}	$\mathbb E$	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_{R}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}_{L}	\mathbb{P}_{R}	I

• So $\mathscr{F} = \{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_L, \dots, \mathbb{I}\}$ is a monoid.

The monoid ${\mathscr F}$

0	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}_{L}	\mathbb{P}_{R}	\mathbb{I}
\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}
\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	Q	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{Q}	\mathbb{Q}	\mathbb{Q}	\mathbb{Q}	\mathbb{E}
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}
\mathbb{G}_L	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_L
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}
\mathbb{G}_{LR}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}
\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	Q	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	₽ <u></u> _	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{R}
\mathbb{F}_{LR}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}	\mathbb{P}	\mathbb{F}_{LR}
\mathbb{Q}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	Q	\mathbb{O}	\mathbb{O}	\mathbb{O}	Q	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}
\mathbb{P}	\mathbb{O}	\mathbb{O}	\mathbb{G}	G	\mathbb{G}	\mathbb{P}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}
\mathbb{P}_{L}	\mathbb{O}	\mathbb{O}	\mathbb{G}	G	\mathbb{G}	₽ <u></u>	\mathbb{G}	\mathbb{G}	\mathbb{G}	₽ <u></u>	\mathbb{O}	\mathbb{G}	\mathbb{G}	G	\mathbb{P}_{L}
\mathbb{P}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	G	\mathbb{G}	\mathbb{P}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{O}	\mathbb{G}	\mathbb{G}	G	\mathbb{P}_{R}
I	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_L	\mathbb{G}_R	\mathbb{G}_{LR}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	\mathbb{F}_{LR}	\mathbb{Q}	\mathbb{P}	\mathbb{P}_L	\mathbb{P}_{R}	\mathbb{I}

▶ So $\mathscr{F} = \{ \mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_L, \dots, \mathbb{I} \}$ is a monoid..... and $|\mathscr{F}| \leq 15$.

The size of ${\mathscr F}$

The size of \mathscr{F}

• The above are all distinct for $M = G \times B_0 \times \mathbb{N}$.

The size of ${\mathscr F}$

• The above are all distinct for $M = G \times B_0 \times \mathbb{N}$.

The size of ${\mathscr F}$

• The above are all distinct for $M = G \times B_0 \times \mathbb{N}$.

▶ So $|\mathscr{F}| = 15$ inspired by Cromars Fish Shop...

The structure of ${\mathscr F}$

 $\mathcal{L}(M)$

Ŧ

► For a monoid *M*, define

$$\mathscr{L}(M) = \{\mathbb{X}(M) : \mathbb{X} \in \mathscr{F}\}$$

► For a monoid *M*, define

$$\begin{aligned} \mathscr{L}(M) &= \big\{ \mathbb{X}(M) : \mathbb{X} \in \mathscr{F} \big\} \\ &= \big\{ \mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_L(M), \dots, \mathbb{I}(M) \big\}. \end{aligned}$$

For a monoid M, define
ℒ(M) = {X(M) : X ∈ ℱ}
= {O(M), E(M), G(M), G_L(M), ..., I(M)}.
|ℒ(M)| ≤ 15.

► For a monoid *M*, define

$$\begin{aligned} \mathscr{L}(M) &= \big\{ \mathbb{X}(M) : \mathbb{X} \in \mathscr{F} \big\} \\ &= \big\{ \mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_L(M), \dots, \mathbb{I}(M) \big\}. \end{aligned}$$

► $|\mathscr{L}(M)| \leq 15.$

• If M is a group, then $\mathscr{L}(M) = \{\{1\}, M\}$.

► For a monoid *M*, define

$$\mathscr{L}(M) = \{\mathbb{X}(M) : \mathbb{X} \in \mathscr{F}\}\$$

= $\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_L(M), \dots, \mathbb{I}(M)\}.$

► $|\mathscr{L}(M)| \leq 15.$

0

- If M is a group, then $\mathscr{L}(M) = \{\{1\}, M\}$.
- If *M* is idempotent-generated, then $\mathscr{L}(M) = \{\{1\}, M\}$.

► For a monoid *M*, define

$$\mathscr{L}(M) = \{\mathbb{X}(M) : \mathbb{X} \in \mathscr{F}\}\$$

= $\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_L(M), \dots, \mathbb{I}(M)\}.$

► $|\mathscr{L}(M)| \leq 15.$

0

- If M is a group, then $\mathscr{L}(M) = \{\{1\}, M\}$.
- If *M* is idempotent-generated, then $\mathscr{L}(M) = \{\{1\}, M\}$.

• What else could $\mathscr{L}(M)$ be?

► For a monoid *M*, define

$$\begin{aligned} \mathscr{L}(M) &= \big\{ \mathbb{X}(M) : \mathbb{X} \in \mathscr{F} \big\} \\ &= \big\{ \mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_L(M), \dots, \mathbb{I}(M) \big\}. \end{aligned}$$

- ► $|\mathscr{L}(M)| \leq 15.$
- If M is a group, then $\mathscr{L}(M) = \{\{1\}, M\}$.
- If *M* is idempotent-generated, then $\mathscr{L}(M) = \{\{1\}, M\}$.

• What else could $\mathscr{L}(M)$ be?

• Observation:
$$\mathbb{G}_L(M) = \mathbb{G}(M) \Leftrightarrow \mathbb{G}_R(M) = \mathbb{G}(M)$$
.

► For a monoid *M*, define

$$\mathscr{L}(M) = \{\mathbb{X}(M) : \mathbb{X} \in \mathscr{F}\}\$$

= $\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_L(M), \dots, \mathbb{I}(M)\}.$

- $\blacktriangleright |\mathscr{L}(M)| \leq 15.$
- If M is a group, then $\mathscr{L}(M) = \{\{1\}, M\}$.
- If *M* is idempotent-generated, then $\mathscr{L}(M) = \{\{1\}, M\}$.

• What else could $\mathscr{L}(M)$ be?

- Observation: $\mathbb{G}_L(M) = \mathbb{G}(M) \Leftrightarrow \mathbb{G}_R(M) = \mathbb{G}(M)$.
- $\mathscr{L}(M)$ simplifies greatly for such M.

Classification of lattices

Theorem (inspired by the Old White Swan)

Up to isomorphism, the possible lattices $\mathscr{L}(M)$ are:

Classification of lattices

Theorem (inspired by the Old White Swan)

Up to isomorphism, the possible lattices $\mathscr{L}(M)$ are:

Classification of lattices

Theorem (inspired by the Old White Swan)

Up to isomorphism, the possible lattices $\mathscr{L}(M)$ are:

Thank you

- Idempotents and one-sided units in infinite partial Brauer monoids
 - ► J. Algebra **534** (2019) 427–482
- ► A semigroup of functors on the category of monoids
 - Coming soon...