Semigroups generated by idempotents and one-sided units

Outline

- (Partial) Brauer monoids
- Submonoids generated by combinations of idempotents and one-/two-sided units
- Monoids
- Lattices of submonoids
- A semigroup of functors
- Or: A monoid of monoidal functors on the monoidal category of monoids

Brauer monoids

Brauer monoids

- Let n be a positive integer.

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

$$
\begin{aligned}
& X \rightarrow \begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\bullet & \bullet
\end{array}
\end{aligned}
$$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$

Brauer monoids

- Let n be a positive integer.
- Write $X=\{1, \ldots, n\}$ and $X^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- Let $\mathcal{B}_{n}=\left\{\right.$ matchings of $\left.X \cup X^{\prime}\right\}$
$=$ the Brauer monoid of degree n.

Brauer monoids - product in \mathcal{B}_{n}

Brauer monoids - product in \mathcal{B}_{n}

Let $\alpha, \beta \in \mathcal{B}_{n}$.

$$
\alpha=
$$

$$
\beta=\begin{aligned}
& \bullet \bullet \bullet \bullet \bullet \\
& \bullet \bullet
\end{aligned}
$$

Brauer monoids - product in \mathcal{B}_{n}

Let $\alpha, \beta \in \mathcal{B}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,

$$
\alpha=
$$

Brauer monoids - product in \mathcal{B}_{n}

Let $\alpha, \beta \in \mathcal{B}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices

Brauer monoids - product in \mathcal{B}_{n}

Let $\alpha, \beta \in \mathcal{B}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,

Brauer monoids - product in \mathcal{B}_{n}

Let $\alpha, \beta \in \mathcal{B}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

Brauer monoids - product in \mathcal{B}_{n}

Let $\alpha, \beta \in \mathcal{B}_{n}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

The operation is associative, so \mathcal{B}_{n} is a semigroup (monoid, etc).

Brauer algebras - some history

Brauer algebras - some history

Annals of Mathematics
Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

Brauer algebras - some history

Annals of Mathematics

Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

Every term of this polynomial must contain each of the vectors $\mathfrak{u}(1), \mathfrak{u}(2), \cdots$, $\mathfrak{u}(f), \mathfrak{t}(1), \mathfrak{t}(2), \cdots, \mathfrak{r}(f)$ exactly once. Therefore, J is a linear combination of the products of the form,

$$
\begin{equation*}
J=(\mathfrak{p}(1), \mathfrak{p}(2))(\mathfrak{b}(3), \mathfrak{p}(4)) \cdots(\mathfrak{p}(2 f-1), \mathfrak{p}(2 f)), \tag{38}
\end{equation*}
$$

where $\mathfrak{b}(1), \mathfrak{b}(2), \cdots, \mathfrak{b}(2 f)$ form a permutation of $\mathfrak{u}(1), \cdots, \mathfrak{u}(f), \mathfrak{t}(1), \cdots$, $\mathfrak{t}(f)$. We represent $\mathfrak{u}(1), \mathfrak{u}(2), \cdots, \mathfrak{u}(f)$ by f dots in a row, and $\mathfrak{t}(1), \mathfrak{t}(2), \cdots$, $\mathfrak{k}(f)$ by f dots in a second row. We connect two dots by a line, if the inner product of the corresponding vectors appears in (38). We thus obtain symbols S of the following type (e.g. $f=5$)

To every such symbol S corresponds an invariant (38) which will be denoted by J_{s}. For instance, the symbol (39) corresponds to

$$
\begin{equation*}
(\mathfrak{u}(1), \mathfrak{u}(3))(\mathfrak{u}(2), \mathfrak{z}(1))(\mathfrak{u}(4), \mathfrak{r}(2))(\mathfrak{u}(5), \mathfrak{x}(5))(\mathfrak{r}(3), \mathfrak{x}(4)) . \tag{40}
\end{equation*}
$$

Brauer algebras - some history

Annals of Mathematics

Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

we obtain

Brauer algebras - some history

Annals of Mathematics
Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

It may happen that the N elements S are linearly dependent in B. We consider the N symbols S as basis elements of a new algebra Γ of order N and define multiplication by (44). Then B is a representation of Γ (but not necessarily a (1-1)-representation). It is easy to show that Γ is associative.

Brauer algebras - some history

Annals of Mathematics
Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- 75 years later......

The second fundamental theorem of invariant theory for the orthogonal group

Brauer algebras - some history

Annals of Mathematics
Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- 75 years later......

The second fundamental theorem of invariant theory for the orthogonal group

Brauer algebras - some history

Annals of Mathematics

Vol. 38, No. 4, October, 1937

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- Brauer algebras \supseteq Temperley-Lieb algebras.

Brauer algebras - some history

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- Brauer algebras \supseteq Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.

Brauer algebras - some history

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- Brauer algebras \supseteq Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).

Brauer algebras - some history

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- Brauer algebras \supseteq Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).
- The above are all twisted semigroup algebras.

Brauer algebras - some history

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- Brauer algebras \supseteq Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).
- The above are all twisted semigroup algebras.
- At the turn of century, the underlying "diagram semigroups" were noticed by semigroup theorists.

Brauer algebras - some history

ON ALGEBRAS WHICH ARE CONNECTED WITH THE SEMISIMPLE CONTINUOUS GROUPS*

By Richard Brauer

- Brauer algebras \supseteq Temperley-Lieb algebras.
- Brauer algebras \subseteq partition algebras.
- Connections with physics and knot theory (Jones, Kauffman, Martin).
- The above are all twisted semigroup algebras.
- At the turn of century, the underlying "diagram semigroups" were noticed by semigroup theorists.
- They've been studied intensively ever since.

Brauer monoids - selected results

Brauer monoids - selected results

- Green's relations, maximal subgroups - Mazorchuk 1998

Brauer monoids - selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002

Brauer monoids - selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006

Brauer monoids - selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007

Brauer monoids - selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity - Auinger 2012

Brauer monoids — selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity - Auinger 2012
- Pseudovarieties - Auinger, Volkov, et al 2017+

Brauer monoids — selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity - Auinger 2012
- Pseudovarieties - Auinger, Volkov, et al 2017+
- Ideals - East and Gray 2017

Brauer monoids — selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity - Auinger 2012
- Pseudovarieties - Auinger, Volkov, et al 2017+
- Ideals - East and Gray 2017
- Congruences - East, Mitchell, Ruškuc, Torpey 2018

Brauer monoids — selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity - Auinger 2012
- Pseudovarieties - Auinger, Volkov, et al 2017+
- Ideals - East and Gray 2017
- Congruences - East, Mitchell, Ruškuc, Torpey 2018
- Sandwich semigroups — Đurđev, Dolinka and East 2019+

Brauer monoids — selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity - Auinger 2012
- Pseudovarieties - Auinger, Volkov, et al 2017+
- Ideals - East and Gray 2017
- Congruences - East, Mitchell, Ruškuc, Torpey 2018
- Sandwich semigroups - Đurđev, Dolinka and East 2019+
- Other diagram semigroups/categories - many authors

Brauer monoids — selected results

- Green's relations, maximal subgroups - Mazorchuk 1998
- Automorphisms and endomorphisms - Mazorchuk 2002
- Presentations - Kudryavtseva and Mazorchuk 2006
- Idempotent-generated subsemigroup - Maltcev and Mazorchuk 2007
- Khron-Rhodes complexity - Auinger 2012
- Pseudovarieties - Auinger, Volkov, et al 2017+
- Ideals - East and Gray 2017
- Congruences - East, Mitchell, Ruškuc, Torpey 2018
- Sandwich semigroups — Đurđev, Dolinka and East 2019+
- Other diagram semigroups/categories - many authors
- Inspiration/techniques taken from transformation semigroups

Infinite Brauer monoids

Infinite Brauer monoids

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.

Infinite Brauer monoids

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.

Infinite Brauer monoids

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.

Infinite Brauer monoids

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.

Infinite Brauer monoids

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\alpha \beta \notin \mathcal{B}_{\mathbb{N}}$!

$$
\begin{aligned}
& \alpha \beta=
\end{aligned}
$$

Infinite Brauer monoids

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\alpha \beta \notin \mathcal{B}_{\mathbb{N}}$!
- So $\mathcal{B}_{\mathbb{N}}$ is not a semigroup!

$$
\begin{aligned}
& \alpha \beta=
\end{aligned}
$$

Infinite Brauer monoids DON'T EXIST!

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\alpha \beta \notin \mathcal{B}_{\mathbb{N}}$!
- So $\mathcal{B}_{\mathbb{N}}$ is not a semigroup!

$$
\begin{aligned}
& \alpha \beta=
\end{aligned}
$$

Infinite Brauer monoids DON'T EXIST!

- Consider $\alpha, \beta \in \mathcal{B}_{\mathbb{N}}$ below.
- $\alpha \beta \notin \mathcal{B}_{\mathbb{N}}$!
- So $\mathcal{B}_{\mathbb{N}}$ is not a semigroup!
- But $\alpha \beta \in \mathcal{P} \mathcal{B}_{\mathbb{N}}$, the partial Brauer monoid.

Partial Brauer monoids

Partial Brauer monoids

- Let X be a set.

Partial Brauer monoids

- Let X be a set.
- Fix a disjoint copy $X^{\prime}=\left\{x^{\prime}: x \in X\right\}$.

Partial Brauer monoids

- Let X be a set.
- Fix a disjoint copy $X^{\prime}=\left\{x^{\prime}: x \in X\right\}$.

$$
\begin{aligned}
& X \rightarrow \\
& X \\
& \bullet \\
& X^{\prime} \rightarrow \\
& \bullet \\
& 1^{\prime}
\end{aligned} \stackrel{2}{2}^{\bullet}
$$

Partial Brauer monoids

- Let X be a set.
- Fix a disjoint copy $X^{\prime}=\left\{x^{\prime}: x \in X\right\}$.
- Let $\mathcal{P} \mathcal{B}_{X}=\left\{\right.$ partial matchings of $\left.X \cup X^{\prime}\right\}$

$$
\begin{aligned}
& X \rightarrow \begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\bullet & \bullet
\end{array}
\end{aligned}
$$

Partial Brauer monoids

- Let X be a set.
- Fix a disjoint copy $X^{\prime}=\left\{x^{\prime}: x \in X\right\}$.
- Let $\mathcal{P} \mathcal{B}_{X}=\left\{\right.$ partial matchings of $\left.X \cup X^{\prime}\right\}$

Partial Brauer monoids

- Let X be a set.
- Fix a disjoint copy $X^{\prime}=\left\{x^{\prime}: x \in X\right\}$.
- Let $\mathcal{P} \mathcal{B}_{X}=\left\{\right.$ partial matchings of $\left.X \cup X^{\prime}\right\}$
$=$ the partial Brauer monoid over X.

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Let $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$.

$$
\alpha=
$$

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Let $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Let $\alpha, \beta \in \mathcal{P B}_{X}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Let $\alpha, \beta \in \mathcal{P B}_{X}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Let $\alpha, \beta \in \mathcal{P B}_{X}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out (and prune) resulting graph to obtain $\alpha \beta$.

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Let $\alpha, \beta \in \mathcal{P B}_{X}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out (and prune) resulting graph to obtain $\alpha \beta$.

- The operation is associative, so $\mathcal{P B} \mathcal{B}_{X}$ is a semigroup (monoid, etc).

Partial Brauer monoids - product in $\mathcal{P} \mathcal{B}_{X}$

Let $\alpha, \beta \in \mathcal{P B}_{X}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out (and prune) resulting graph to obtain $\alpha \beta$.

- The operation is associative, so $\mathcal{P B} \mathcal{B}_{X}$ is a semigroup (monoid, etc).
- No problems with infinite X.

Partial Brauer monoids - units and idempotents

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1 .

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1 .

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1 .
- Units of $\mathcal{P} \mathcal{B}_{X}$ are permutations.

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1 .
- Units of $\mathcal{P} \mathcal{B}_{X}$ are permutations.

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1.
- Units of $\mathcal{P} \mathcal{B}_{X}$ are permutations.

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1.
- Units of $\mathcal{P} \mathcal{B}_{X}$ are permutations. So $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\mathcal{S}_{X}$.

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1.
- Units of $\mathcal{P} \mathcal{B}_{X}$ are permutations. So $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\mathcal{S}_{X}$.

- Idempotents are harder to describe.

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1.
- Units of $\mathcal{P} \mathcal{B}_{X}$ are permutations. So $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\mathcal{S}_{X}$.

- Idempotents are harder to describe.
- Dolinka, East, Evangelou, FitzGerald, Ham, Hyde, Loughlin (JCTA 2015).

Partial Brauer monoids - units and idempotents

- $\mathcal{P} \mathcal{B}_{X}$ has an identity element 1.
- Units of $\mathcal{P} \mathcal{B}_{X}$ are permutations. So $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\mathcal{S}_{X}$.

- Idempotents are harder to describe.
- Dolinka, East, Evangelou, FitzGerald, Ham, Hyde, Loughlin (JCTA 2015).

Next few pages:

- Idempotents and one-sided units in infinite partial Brauer monoids
- J. Algebra 534 (2019) 427-482

Partial Brauer monoids - products of idempotents

Partial Brauer monoids - products of idempotents

Theorem (inspired by Howie 1966)

Let $\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$. Then

$$
\begin{aligned}
\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right) & =\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \leq 1 \text { and } \operatorname{sh}(\alpha)=0\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \geq 2 \text { and } \operatorname{supp}(\alpha)<\aleph_{0}\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=\operatorname{codef}(\alpha) \geq \max \left(\aleph_{0}, \operatorname{sh}(\alpha)\right)\right\}
\end{aligned}
$$

Partial Brauer monoids - products of idempotents

Theorem (inspired by Howie 1966)

Let $\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$. Then

$$
\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \leq 1 \text { and } \operatorname{sh}(\alpha)=0\right\}
$$

$$
\begin{aligned}
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \geq 2 \text { and } \operatorname{supp}(\alpha)<\aleph_{0}\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=\operatorname{codef}(\alpha) \geq \max \left(\aleph_{0}, \operatorname{sh}(\alpha)\right)\right\} .
\end{aligned}
$$

- $\operatorname{def}(\alpha)=|X \backslash \operatorname{dom}(\alpha)|$

Partial Brauer monoids - products of idempotents

Theorem (inspired by Howie 1966)

Let $\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$. Then

$$
\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \leq 1 \text { and } \operatorname{sh}(\alpha)=0\right\}
$$

$$
\begin{aligned}
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \geq 2 \text { and } \operatorname{supp}(\alpha)<\aleph_{0}\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=\operatorname{codef}(\alpha) \geq \max \left(\aleph_{0}, \operatorname{sh}(\alpha)\right)\right\} .
\end{aligned}
$$

- $\operatorname{def}(\alpha)=|X \backslash \operatorname{dom}(\alpha)|$ and $\operatorname{codef}(\alpha)=|X \backslash \operatorname{codom}(\alpha)|$,

Partial Brauer monoids - products of idempotents

Theorem (inspired by Howie 1966)

Let $\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$. Then

$$
\begin{aligned}
\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right) & =\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \leq 1 \text { and } \operatorname{sh}(\alpha)=0\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \geq 2 \text { and } \operatorname{supp}(\alpha)<\aleph_{0}\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=\operatorname{codef}(\alpha) \geq \max \left(\aleph_{0}, \operatorname{sh}(\alpha)\right)\right\}
\end{aligned}
$$

- $\operatorname{def}(\alpha)=|X \backslash \operatorname{dom}(\alpha)|$ and $\operatorname{codef}(\alpha)=|X \backslash \operatorname{codom}(\alpha)|$,
- $\operatorname{sh}(\alpha)=|x \in \operatorname{dom}(\alpha): x \alpha \neq x|$,

Partial Brauer monoids - products of idempotents

Theorem (inspired by Howie 1966)

Let $\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$. Then

$$
\begin{aligned}
\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right) & =\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \leq 1 \text { and } \operatorname{sh}(\alpha)=0\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \geq 2 \text { and } \operatorname{supp}(\alpha)<\aleph_{0}\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=\operatorname{codef}(\alpha) \geq \max \left(\aleph_{0}, \operatorname{sh}(\alpha)\right)\right\}
\end{aligned}
$$

- $\operatorname{def}(\alpha)=|X \backslash \operatorname{dom}(\alpha)|$ and $\operatorname{codef}(\alpha)=|X \backslash \operatorname{codom}(\alpha)|$,
- $\operatorname{sh}(\alpha)=|x \in \operatorname{dom}(\alpha): x \alpha \neq x|$,
- $\operatorname{supp}(\alpha)=\operatorname{sh}(\alpha)+\operatorname{def}(\alpha)=\operatorname{sh}(\alpha)+\operatorname{codef}(\alpha)$.

Partial Brauer monoids - products of idempotents

Theorem (inspired by Howie 1966)

Let $\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$. Then

$$
\begin{aligned}
\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right) & =\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \leq 1 \text { and } \operatorname{sh}(\alpha)=0\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha) \geq 2 \text { and } \operatorname{supp}(\alpha)<\aleph_{0}\right\} \\
& \cup\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=\operatorname{codef}(\alpha) \geq \max \left(\aleph_{0}, \operatorname{sh}(\alpha)\right)\right\} .
\end{aligned}
$$

Theorem (inspired by Fountin and Lewin 1993)

Let $\mathbb{F}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right) \cup \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$. Then

$$
\mathbb{F}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=\operatorname{codef}(\alpha)\right\}
$$

Partial Brauer monoids - relative rank

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$.

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$.
- In fact, $\mathcal{P B}_{X}=\alpha \mathcal{S}_{X} \beta$.

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$.
- In fact, $\mathcal{P B}_{X}=\alpha \mathcal{S}_{X} \beta$.
$-\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{S}_{X}\right)=2$.

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P B}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$.
- In fact, $\mathcal{P B}_{X}=\alpha \mathcal{S}_{X} \beta$.
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{S}_{X}\right)=2$.
- Any generating pair for $\mathcal{P} \mathcal{B}_{X}$ modulo \mathcal{S}_{X} looks like α, β.

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P B}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$.
- In fact, $\mathcal{P B}_{X}=\alpha \mathcal{S}_{X} \beta$.
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{S}_{X}\right)=2$.
- Any generating pair for $\mathcal{P} \mathcal{B}_{X}$ modulo \mathcal{S}_{X} looks like α, β.
- $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathcal{B}_{X}\right\rangle$

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P B}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$.
- In fact, $\mathcal{P B}_{X}=\alpha \mathcal{S}_{X} \beta$.
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{S}_{X}\right)=2$.
- Any generating pair for $\mathcal{P} \mathcal{B}_{X}$ modulo \mathcal{S}_{X} looks like α, β.
- $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathcal{B}_{X}\right\rangle=\mathcal{B}_{X}^{2}$.

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P B}_{X}=\left\langle\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right), \alpha, \beta\right\rangle$.
- In fact, $\mathcal{P} \mathcal{B}_{X}=\alpha \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right) \beta$.
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$.
- Any generating pair for $\mathcal{P} \mathcal{B}_{X}$ modulo $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)$ looks like α, β.
- $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathcal{B}_{X}\right\rangle=\mathcal{B}_{X}^{2}$.

Partial Brauer monoids - relative rank

Theorem (inspired by Higgins, Howie, Ruškuc 1998)

- For $\alpha, \beta \in \mathcal{P} \mathcal{B}_{X}$ as below, $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right), \alpha, \beta\right\rangle$.
- In fact, $\mathcal{P B}_{X}=\alpha \mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right) \beta$.
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$.
- Any generating pair for $\mathcal{P B}$ ㄱodulo $\mathbb{E}\left(\mathcal{P} \mathcal{B}_{X}\right)$ looks like α, β.
- $\mathcal{P} B_{x}=\left\langle B_{x}\right\rangle=B_{x}^{2}$.

Partial Brauer monoids - one-sided units

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$.

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$.

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$. So $\langle\alpha, \beta\rangle$ is bicyclic.

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$. So $\langle\alpha, \beta\rangle$ is bicyclic.
- α and β are one-sided units.

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$. So $\langle\alpha, \beta\rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$. So $\langle\alpha, \beta\rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique:

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$. So $\langle\alpha, \beta\rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique: $1=\alpha \beta=\alpha \gamma$

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$. So $\langle\alpha, \beta\rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique: $1=\alpha \beta=\alpha \gamma=\alpha \delta$

Partial Brauer monoids — one-sided units

- Consider α from the theorem(s).
- Then $\alpha \beta=1$... but $\beta \alpha \neq 1$. So $\langle\alpha, \beta\rangle$ is bicyclic.
- α and β are one-sided units.
- α is a right unit (it has a right inverse).
- Right inverses are not unique: $1=\alpha \beta=\alpha \gamma=\alpha \delta=\alpha \varepsilon \ldots$

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,

Partial Brauer monoids - one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Partial Brauer monoids - one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{dom}(\alpha)=X\right\}$

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{dom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=0\right\},
$$

Partial Brauer monoids - one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{dom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=0\right\},
$$

- $\mathbb{G}_{L}\left(\mathcal{P B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codef}(\alpha)=0\right\},
$$

Partial Brauer monoids - one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{dom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=0\right\}
$$

- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codef}(\alpha)=0\right\}
$$

- $\mathcal{P B} \mathcal{B}_{X}=\left\langle\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right) \cup \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{dom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=0\right\},
$$

- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codef}(\alpha)=0\right\},
$$

- $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathbb{G}_{L}\left(\mathcal{B}_{X}\right) \cup \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle=\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right) \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)$

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{dom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{def}(\alpha)=0\right\}
$$

- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codom}(\alpha)=X\right\}$

$$
=\left\{\alpha \in \mathcal{P} \mathcal{B}_{X}: \operatorname{codef}(\alpha)=0\right\}
$$

- $\mathcal{P} \mathcal{B}_{X}=\left\langle\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right) \cup \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle=\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right) \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)$

$$
=\mathbb{G}_{R}\left(\mathcal{B}_{X}\right) \mathbb{G}_{L}\left(\mathcal{B}_{X}\right)
$$

Partial Brauer monoids - one-sided units

- $\mathbb{G}\left(\mathcal{P B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$,

Partial Brauer monoids - one-sided units

- $\mathbb{G}\left(\mathcal{P B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$,
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=1$

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$,
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=1=\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)$,

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$,
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=1=\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)$,
$-\operatorname{rank}\left(\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right): \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)$

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$,
- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=1=\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)$,
$-\operatorname{rank}\left(\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right): \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=1+\rho$, where ρ is the number of infinite cardinals $\aleph_{0} \leq \mu \leq|X|$.

Partial Brauer monoids — one-sided units

- $\mathbb{G}\left(\mathcal{P B}_{X}\right)=\left\{\right.$ units of $\left.\mathcal{P B}_{X}\right\}=\mathcal{S}_{X}$,
- $\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ left units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$,
- $\mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\{\right.$ right units of $\left.\mathcal{P} \mathcal{B}_{X}\right\}$.

Theorem

- $\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=2$,
$-\operatorname{rank}\left(\mathcal{P B} \mathcal{B}_{X}: \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=1=\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)$,
- $\operatorname{rank}\left(\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right): \mathbb{G}\left(\mathcal{P} \mathcal{B}_{X}\right)\right)=1+\rho$,
where ρ is the number of infinite cardinals $\aleph_{0} \leq \mu \leq|X|$.
- Generators modulo these submonoids are classified.

Partial Brauer monoids - submonoids

- $\mathbb{F}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)=\left\langle E\left(\mathcal{P} \mathcal{B}_{X}\right) \cup \mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$, etc.

Partial Brauer monoids - submonoids

- $\mathcal{F}_{X}^{L}=\mathbb{F}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right)$, etc.

Partial Brauer monoids - submonoids

Journal of Algebra 534 (2019) 427-482

Idempotents and one-sided units in infinite partial Brauer monoids

James East

Centre for Research in Mathernatics; School of Computing, Engineering and
Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

Lemma 4.1	Description of \mathcal{G}_{X}^{L} and \mathcal{G}_{X}
Theorem 5.8	Description of \mathcal{E}_{X}
Theorem 6.1	Description of \mathcal{F}_{X}
Theorem 6.6	Description of \mathcal{F}_{X}^{L}
Theorem 4.7	$\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{G}_{X}\right)=2$
Theorem 4.9	$\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{G}_{X}^{L}\right)=1$
Theorem 5.12	$\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{E}_{X}\right)=2$
Theorem 6.3	$\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{F}_{X}\right)=2$
Theorem 7.1	$\operatorname{rank}\left(\mathcal{P} \mathcal{B}_{X}: \mathcal{F}_{X}^{L}\right)=1$

Theorem 7.6	$\operatorname{rank}\left(\mathcal{F}_{X}^{L}: \mathcal{F}_{X}\right)=1+\rho$
Theorem 7.7	$\operatorname{rank}\left(\mathcal{F}_{X}^{L}: \mathcal{E}_{X}\right)=2^{\|X\|}$
Theorem 7.14	$\operatorname{rank}\left(\mathcal{F}_{X}^{L}: \mathcal{G}_{X}^{L}\right)=2+2 \rho$
Theorem 7.17	$\operatorname{rank}\left(\mathcal{F}_{X}^{L}: \mathcal{G}_{X}\right)=3+3 \rho$
Theorem 6.5	$\operatorname{rank}\left(\mathcal{F}_{X}: \mathcal{E}_{X}\right)=2^{\|X\|}$
Theorem 6.16	$\operatorname{rank}\left(\mathcal{F}_{X}: \mathcal{G}_{X}\right)=2+2 \rho$
Theorem 4.12	$\operatorname{rank}\left(\mathcal{G}_{X}^{L}: \mathcal{G}_{X}\right)=2+2 \rho$
Theorem 8.3	$\operatorname{Bergman} /$ Sierpiński in $\mathcal{P} \mathcal{B}_{X}$
Theorem 8.8	$\operatorname{Bergman} /$ Sierpiński in all other monoids

Partial Brauer monoids - Sierpiński and Bergman

Partial Brauer monoids -Sierpiński and Bergman

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

$\mathcal{P} \mathcal{B}_{X}$ has the Bergman property:

Partial Brauer monoids -Sierpiński and Bergman

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

$\mathcal{P} \mathcal{B}_{X}$ has the Bergman property:

- the length function is bounded for any generating set.

Partial Brauer monoids -Sierpiński and Bergman

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

$\mathcal{P} \mathcal{B}_{X}$ has the Bergman property:

- the length function is bounded for any generating set.

Theorem (inspired by Hyde and Péresse)

For infinite $X, \mathcal{P} \mathcal{B}_{X}$ has Sierpiński rank 2:

Partial Brauer monoids —Sierpiński and Bergman

Theorem (inspired by Maltcev, Mitchell and Ruškuc)

$\mathcal{P} \mathcal{B}_{X}$ has the Bergman property:

- the length function is bounded for any generating set.

Theorem (inspired by Hyde and Péresse)

For infinite $X, \mathcal{P} \mathcal{B}_{X}$ has Sierpiński rank 2:

- any countable subset of $\mathcal{P B}$ X is contained in a 2-generated subsemigroup.

Partial Brauer monoids - Sierpiński and Bergman

Theorem

For infinite X :

- $\operatorname{SR}\left(\mathcal{E}_{X}\right)=\infty$,

Partial Brauer monoids -Sierpiński and Bergman

Theorem

For infinite X :

- $\operatorname{SR}\left(\mathcal{E}_{X}\right)=\infty$,
- $\operatorname{SR}\left(\mathcal{G}_{X}^{L}\right)=\operatorname{SR}\left(\mathcal{G}_{X}^{R}\right)=\operatorname{SR}\left(\mathcal{F}_{X}\right)$,

$$
= \begin{cases}2 n+6 & \text { if }|X|=\aleph_{n}, \text { where } n \in \mathbb{N} \\ \infty & \text { if }|X| \geq \aleph_{\omega},\end{cases}
$$

Partial Brauer monoids - Sierpiński and Bergman

Theorem

For infinite X :

- $\operatorname{SR}\left(\mathcal{E}_{X}\right)=\infty$,
- $\operatorname{SR}\left(\mathcal{G}_{X}^{L}\right)=\operatorname{SR}\left(\mathcal{G}_{X}^{R}\right)=\operatorname{SR}\left(\mathcal{F}_{X}\right)$,

$$
= \begin{cases}2 n+6 & \text { if }|X|=\aleph_{n}, \text { where } n \in \mathbb{N} \\ \infty & \text { if }|X| \geq \aleph_{\omega}\end{cases}
$$

- $\operatorname{SR}\left(\mathcal{F}_{X}^{L}\right)=\operatorname{SR}\left(\mathcal{F}_{X}^{R}\right)= \begin{cases}3 n+8 & \text { if }|X|=\aleph_{n}, \text { where } n \in \mathbb{N} \\ \infty & \text { if }|X| \geq \aleph_{\omega} .\end{cases}$

Partial Brauer monoids - Sierpiński and Bergman

Theorem

For infinite X :

- $\operatorname{SR}\left(\mathcal{E}_{X}\right)=\infty$,
- $\operatorname{SR}\left(\mathcal{G}_{X}^{L}\right)=\operatorname{SR}\left(\mathcal{G}_{X}^{R}\right)=\operatorname{SR}\left(\mathcal{F}_{X}\right)$,

$$
= \begin{cases}2 n+6 & \text { if }|X|=\aleph_{n}, \text { where } n \in \mathbb{N} \\ \infty & \text { if }|X| \geq \aleph_{\omega}\end{cases}
$$

- $\operatorname{SR}\left(\mathcal{F}_{X}^{L}\right)=\operatorname{SR}\left(\mathcal{F}_{X}^{R}\right)= \begin{cases}3 n+8 & \text { if }|X|=\aleph_{n}, \text { where } n \in \mathbb{N} \\ \infty & \text { if }|X| \geq \aleph_{\omega} .\end{cases}$
- None of $\mathcal{E}_{X}, \mathcal{G}_{X}^{L}, \mathcal{G}_{X}^{R}, \mathcal{F}_{X}, \mathcal{F}_{X}^{L}, \mathcal{F}_{X}^{R}$ have the Bergman property.

Monoids

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}(M)=\{$ units of $M\}$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}_{R}(M)=\{$ right units of $M\}$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}_{R}(M)=\{$ right units of $M\}$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}_{R}(M)=\{$ right units of $M\}$
- $\mathbb{G}_{L R}(M)=\left\langle\mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{F}_{L}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M)\right\rangle$
- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}_{R}(M)=\{$ right units of $M\}$
- $\mathbb{G}_{L R}(M)=\left\langle\mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$

Monoids

For a monoid M, let

- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}_{R}(M)=\{$ right units of $M\}$
- $\mathbb{G}_{L R}(M)=\left\langle\mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{F}_{L}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M)\right\rangle$
- $\mathbb{F}_{R}(M)=\left\langle E(M) \cup \mathbb{G}_{R}(M)\right\rangle$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{F}_{L}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M)\right\rangle$
- $\mathbb{F}_{R}(M)=\left\langle E(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{F}_{L R}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{F}_{L}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M)\right\rangle$
- $\mathbb{F}_{R}(M)=\left\langle E(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{F}_{L R}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{I}(M)=M$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{F}_{L}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M)\right\rangle$
- $\mathbb{F}_{R}(M)=\left\langle E(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{F}_{L R}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{I}(M)=M$
- $\mathbb{O}(M)=\{1\}$
- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}_{R}(M)=\{$ right units of $M\}$
- $\mathbb{G}_{L R}(M)=\left\langle\mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$

Monoids

For a monoid M, let

- $\mathbb{E}(M)=\langle E(M)\rangle$
- $\mathbb{G}(M)=\{$ units of $M\}$
- $\mathbb{F}(M)=\langle E(M) \cup \mathbb{G}(M)\rangle$
- $\mathbb{F}_{L}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M)\right\rangle$
- $\mathbb{F}_{R}(M)=\left\langle E(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{F}_{L R}(M)=\left\langle E(M) \cup \mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- $\mathbb{I}(M)=M$
- $\mathbb{O}(M)=\{1\}$
- $\mathbb{G}_{L}(M)=\{$ left units of $M\}$
- $\mathbb{G}_{R}(M)=\{$ right units of $M\}$
- $\mathbb{G}_{L R}(M)=\left\langle\mathbb{G}_{L}(M) \cup \mathbb{G}_{R}(M)\right\rangle$
- All are submonoids of M.

Submonoids

Submonoids

Submonoids

- $\mathrm{WTF}_{L R}$?

Submonoids

- $\mathrm{WTF}_{\text {LR }}$?
- Earlier theorem: $\mathcal{P B} \mathcal{B}_{X}=\left\langle\mathbb{G}_{L}\left(\mathcal{P} \mathcal{B}_{X}\right) \cup \mathbb{G}_{R}\left(\mathcal{P} \mathcal{B}_{X}\right)\right\rangle$.

Submonoids

- $\mathrm{WTF}_{L R}$?
- Earlier theorem: $\mathcal{P} \mathcal{B}_{X}=\mathbb{G}_{L R}\left(\mathcal{P} \mathcal{B}_{X}\right)$

Submonoids

- $\mathrm{WTF}_{L R}$?
- Earlier theorem: $\mathcal{P B}_{X}=\mathbb{G}_{L R}\left(\mathcal{P} \mathcal{B}_{X}\right)=\mathbb{F}_{L R}\left(\mathcal{P} \mathcal{B}_{X}\right)$!

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=$

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!

$$
\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G}
$$

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!

$$
\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G} .
$$

- Quiz: $\mathbb{E}(\mathbb{E}(M))=$

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!

$$
\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G} .
$$

- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$!

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!
$\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G}$.
- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$!

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!
$\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G}$.
- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$!
$\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))$

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!

$$
\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G} .
$$

- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$!
$\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))=\{1\}$

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!
$\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G}$.
- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$!
$\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))=\{1\}=\mathbb{G}(\mathbb{E}(M))$.

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!

$$
\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G} .
$$

- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$! $\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))=\{1\}=\mathbb{G}(\mathbb{E}(M))$.
$\ldots \ldots \mathbb{E} \circ \mathbb{G}=\mathbb{G} \circ \mathbb{E}=\mathbb{O}$.

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$!

$$
\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G} .
$$

- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$! $\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))=\{1\}=\mathbb{G}(\mathbb{E}(M))$.
$\ldots \ldots . \mathbb{E} \circ \mathbb{G}=\mathbb{G} \circ \mathbb{E}=\mathbb{O}$.
- $\mathbb{X} \circ \mathbb{I}=\mathbb{X}=\mathbb{I} \circ \mathbb{X}$

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$! $\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G}$.
- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$! $\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))=\{1\}=\mathbb{G}(\mathbb{E}(M)) . \quad \ldots \ldots \mathbb{E} \circ \mathbb{G}=\mathbb{G} \circ \mathbb{E}=\mathbb{O}$.
- $\mathbb{X} \circ \mathbb{I}=\mathbb{X}=\mathbb{I} \circ \mathbb{X}$ and $\mathbb{X} \circ \mathbb{O}=\mathbb{O}=\mathbb{O} \circ \mathbb{X}$ for any \mathbb{X}.

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$! $\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G}$.
- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$! $\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))=\{1\}=\mathbb{G}(\mathbb{E}(M)) . \quad \ldots \ldots \mathbb{E} \circ \mathbb{G}=\mathbb{G} \circ \mathbb{E}=\mathbb{O}$.
- $\mathbb{X} \circ \mathbb{I}=\mathbb{X}=\mathbb{I} \circ \mathbb{X}$ and $\mathbb{X} \circ \mathbb{O}=\mathbb{O}=\mathbb{O} \circ \mathbb{X}$ for any \mathbb{X}.
- So we have a monoid of functors,

$$
\mathscr{F}=\left\{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_{L}, \mathbb{G}_{R}, \mathbb{G}_{L R}, \mathbb{F}, \mathbb{F}_{L}, \mathbb{F}_{R}, \mathbb{F}_{L R}, \mathbb{I}\right\} \ldots
$$

Functors

- Let \mathcal{M} be the (monoidal) category of monoids.
- $\mathbb{E}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{E}(M)$ is a (monoidal) functor.
- $\mathbb{G}: \mathcal{M} \rightarrow \mathcal{M}: M \mapsto \mathbb{G}(M)$ is too.
- So are all the rest.
- Quiz: $\mathbb{G}_{L}\left(\mathbb{G}_{L}(M)\right)=\mathbb{G}(M)$! $\ldots \ldots \mathbb{G}_{L} \circ \mathbb{G}_{L}=\mathbb{G}$.
- Quiz: $\mathbb{E}(\mathbb{E}(M))=\mathbb{E}(M)$! $\ldots \ldots . \mathbb{E} \circ \mathbb{E}=\mathbb{E}$.
- $\mathbb{E}(\mathbb{G}(M))=\{1\}=\mathbb{G}(\mathbb{E}(M)) . \quad \ldots \ldots \mathbb{E} \circ \mathbb{G}=\mathbb{G} \circ \mathbb{E}=\mathbb{O}$.
- $\mathbb{X} \circ \mathbb{I}=\mathbb{X}=\mathbb{I} \circ \mathbb{X}$ and $\mathbb{X} \circ \mathbb{O}=\mathbb{O}=\mathbb{O} \circ \mathbb{X}$ for any \mathbb{X}.
- So we have a monoid of functors,

$$
\mathscr{F}=\left\{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_{L}, \mathbb{G}_{R}, \mathbb{G}_{L R}, \mathbb{F}, \mathbb{F}_{L}, \mathbb{F}_{R}, \mathbb{F}_{L R}, \mathbb{I}\right\} \ldots \ldots \ldots \ldots . \text { right? }
$$

Composing functors

\circ	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}
\mathbb{O}											
\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}		\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}								
\mathbb{G}_{L}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{L}
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
$\mathbb{G}_{L R}$	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	$\mathbb{G}_{L R}$
\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}		\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}		\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}		\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G} L R$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	$\mathbb{F}_{L R}$
\mathbb{I}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}

Composing functors

\circ	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}
\mathbb{O}											
\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}								
\mathbb{G}_{L}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{L}
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
$\mathbb{G}_{L R}$	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	$\mathbb{G}_{L R}$
\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	$\mathbb{F}_{L R}$
\mathbb{I}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}

Composing functors

\circ	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}
\mathbb{O}											
\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}								
$\mathbb{G} L$	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{L}
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
$\mathbb{G} L R$	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	$\mathbb{G} L R$
\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	$\mathbb{F}_{L R}$
\mathbb{I}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}

- Are these really new functors?

Composing functors

\circ	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}
\mathbb{O}											
\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}								
\mathbb{G}_{L}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{L}
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
$\mathbb{G} L R$	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	$\mathbb{G} L R$
\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	$\mathbb{F}_{L R}$
\mathbb{I}	\mathbb{O}	\mathbb{E}	\mathbb{G}	$\mathbb{G} L$	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}

- Are these really new functors?
- Now do we have a monoid of functors,

$$
\mathscr{F}=\left\{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_{L}, \mathbb{G}_{R}, \mathbb{G}_{L R}, \mathbb{F}^{\prime}, \mathbb{F}_{L}, \mathbb{F}_{R}, \mathbb{F}_{L R}, \mathbb{Q}, \mathbb{P}, \mathbb{P}_{L}, \mathbb{P}_{R}, \mathbb{I}\right\} ?
$$

Composing functors

\circ	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}
\mathbb{O}											
\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}								
\mathbb{G}_{L}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{L}
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
$\mathbb{G} L R$	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	$\mathbb{G} L R$
\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	$\mathbb{F}_{L R}$
\mathbb{I}	\mathbb{O}	\mathbb{E}	\mathbb{G}	$\mathbb{G} L$	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}

- Are these really new functors?
- Now do we have a monoid of functors,

$$
\mathscr{F}=\left\{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_{L}, \mathbb{G}_{R}, \mathbb{G}_{L R}, \mathbb{F}^{\prime}, \mathbb{F}_{L}, \mathbb{F}_{R}, \mathbb{F}_{L R}, \mathbb{Q}, \mathbb{P}, \mathbb{P}_{L}, \mathbb{P}_{R}, \mathbb{I}\right\} ?
$$

Composing functors

\circ	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}
\mathbb{O}											
\mathbb{E}	\mathbb{O}	\mathbb{E}	\mathbb{O}	\mathbb{O}	\mathbb{O}	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}
\mathbb{G}	\mathbb{O}	\mathbb{O}	\mathbb{G}								
\mathbb{G}_{L}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{L}
\mathbb{G}_{R}	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}_{R}
$\mathbb{G} L R$	\mathbb{O}	\mathbb{O}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	$\mathbb{G} L R$
\mathbb{F}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}_{L}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{L}
\mathbb{F}_{R}	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}_{R}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	\mathbb{O}	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	$\mathbb{F}_{L R}$
\mathbb{I}	\mathbb{O}	\mathbb{E}	\mathbb{G}	$\mathbb{G} L$	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	\mathbb{I}

- Are these really new functors?
- Now do we have a monoid of functors, Yes!

$$
\mathscr{F}=\left\{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_{L}, \mathbb{G}_{R}, \mathbb{G}_{L R}, \mathbb{F}^{\prime}, \mathbb{F}_{L}, \mathbb{F}_{R}, \mathbb{F}_{L R}, \mathbb{Q}, \mathbb{P}, \mathbb{P}_{L}, \mathbb{P}_{R}, \mathbb{I}\right\} ?
$$

The monoid \mathscr{F}

\bigcirc	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}_{L}	\mathbb{P}_{R}	II
(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
\mathbb{E}	(1)	\mathbb{E}	(1)	(1)	(1)	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	Q	Q	Q	\mathbb{Q}	\mathbb{E}
\mathbb{G}	(1)	(1)	\mathbb{G}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}							
\mathbb{G}_{L}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}
\mathbb{G}_{R}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}
$\mathbb{G}_{L R}$	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$
F	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{F}	F	F	F	Q	\mathbb{P}	\mathbb{P}	\mathbb{P}	F
\mathbb{F}_{L}	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	F	F	F	\mathbb{F}_{L}	Q	P	\mathbb{P}	\mathbb{P}	\mathbb{F}_{L}
\mathbb{F}_{R}	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	F	F	F	\mathbb{F}_{R}	Q	P	\mathbb{P}	\mathbb{P}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	F	\mathbb{F}	F	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}	\mathbb{P}	$\mathbb{F}_{L R}$
\mathbb{Q}	(1)	(1)	(1)	(1)	(1)	\mathbb{Q}	(1)	(1)	(1)	\mathbb{Q}	(1)	(1)	(1)	(1)	\mathbb{Q}
\mathbb{P}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}
\mathbb{P}_{L}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}
\mathbb{P}_{R}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}
II	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	Q	\mathbb{P}	\mathbb{P}_{L}	\mathbb{P}_{R}	\underline{I}

The monoid \mathscr{F}

\bigcirc	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}_{L}	\mathbb{P}_{R}	II
(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
\mathbb{E}	(1)	\mathbb{E}	(1)	(1)	(1)	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	Q	Q	Q	\mathbb{Q}	\mathbb{E}
\mathbb{G}	(1)	(1)	\mathbb{G}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}							
\mathbb{G}_{L}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}
\mathbb{G}_{R}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}
$\mathbb{G}_{L R}$	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$
F	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	F	F	F	\mathbb{F}	Q	P	\mathbb{P}	\mathbb{P}	F
\mathbb{F}_{L}	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	F	F	F	\mathbb{F}_{L}	Q	P	\mathbb{P}	\mathbb{P}	\mathbb{F}_{L}
\mathbb{F}_{R}	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	F	F	F	\mathbb{F}_{R}	Q	P	\mathbb{P}	\mathbb{P}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}	\mathbb{P}	$\mathbb{F}_{L R}$
Q	(1)	(1)	(1)	(1)	(1)	\mathbb{Q}	(1)	(1)	(1)	\mathbb{Q}	(1)	(1)	(1)	(1)	Q
\mathbb{P}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}
\mathbb{P}_{L}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}
\mathbb{P}_{R}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}
II	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}_{L}	\mathbb{P}_{R}	II

- So $\mathscr{F}=\left\{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_{L}, \ldots, \mathbb{I}\right\}$ is a monoid.

The monoid \mathscr{F}

\bigcirc	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	F	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}_{L}	\mathbb{P}_{R}	II
(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
\mathbb{E}	(1)	\mathbb{E}	(1)	(1)	(1)	\mathbb{Q}	\mathbb{E}	\mathbb{E}	\mathbb{E}	\mathbb{E}	Q	Q	Q	\mathbb{Q}	\mathbb{E}
\mathbb{G}	(1)	(1)	\mathbb{G}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}							
\mathbb{G}_{L}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{L}
\mathbb{G}_{R}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{G}_{R}
$\mathbb{G}_{L R}$	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$
F	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	F	F	F	\mathbb{F}	Q	P	\mathbb{P}	P	F
\mathbb{F}_{L}	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	F	\mathbb{F}	F	\mathbb{F}_{L}	Q	P	\mathbb{P}	P	\mathbb{F}_{L}
\mathbb{F}_{R}	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	F	F	\mathbb{F}	\mathbb{F}_{R}	Q	P	\mathbb{P}	\mathbb{P}	\mathbb{F}_{R}
$\mathbb{F}_{L R}$	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}	\mathbb{G}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}	\mathbb{F}	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}	\mathbb{P}	$\mathbb{F}_{L R}$
\mathbb{Q}	(1)	(1)	(1)	(1)	(1)	\mathbb{Q}	(1)	(1)	(1)	\mathbb{Q}	(1)	(1)	(1)	(1)	\mathbb{Q}
P	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}
\mathbb{P}_{L}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{L}
\mathbb{P}_{R}	(1)	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}	(1)	\mathbb{G}	\mathbb{G}	\mathbb{G}	\mathbb{P}_{R}
II	(1)	\mathbb{E}	\mathbb{G}	\mathbb{G}_{L}	\mathbb{G}_{R}	$\mathbb{G}_{L R}$	\mathbb{F}	\mathbb{F}_{L}	\mathbb{F}_{R}	$\mathbb{F}_{L R}$	Q	P	\mathbb{P}_{L}	\mathbb{P}_{R}	II

- So $\mathscr{F}=\left\{\mathbb{O}, \mathbb{E}, \mathbb{G}, \mathbb{G}_{L}, \ldots, \mathbb{I}\right\}$ is a monoid..... and $|\mathscr{F}| \leq 15$.

The size of \mathscr{F}

The size of \mathscr{F}

- The above are all distinct for $M=G \times B_{0} \times \mathbb{N}$.

The size of \mathscr{F}

- The above are all distinct for $M=G \times B_{0} \times \mathbb{N}$.
- So $|\mathscr{F}|=15$.

The size of \mathscr{F}

- The above are all distinct for $M=G \times B_{0} \times \mathbb{N}$.
- So $|\mathscr{F}|=15 \ldots \ldots \ldots .$. inspired by Cromars Fish Shop...

The structure of \mathscr{F}

$\mathscr{L}(M)$
\mathscr{F}

The lattice $\mathscr{L}(M)$

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\mathscr{L}(M)=\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\}
$$

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\begin{aligned}
\mathscr{L}(M) & =\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\} \\
& =\left\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_{L}(M), \ldots, \mathbb{I}(M)\right\} .
\end{aligned}
$$

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\begin{aligned}
\mathscr{L}(M) & =\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\} \\
& =\left\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_{L}(M), \ldots, \mathbb{I}(M)\right\} .
\end{aligned}
$$

- $|\mathscr{L}(M)| \leq 15$.

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\begin{aligned}
\mathscr{L}(M) & =\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\} \\
& =\left\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_{L}(M), \ldots, \mathbb{I}(M)\right\} .
\end{aligned}
$$

- $|\mathscr{L}(M)| \leq 15$.
- If M is a group, then $\mathscr{L}(M)=\{\{1\}, M\}$.

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\begin{aligned}
\mathscr{L}(M) & =\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\} \\
& =\left\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_{L}(M), \ldots, \mathbb{I}(M)\right\} .
\end{aligned}
$$

- $|\mathscr{L}(M)| \leq 15$.
- If M is a group, then $\mathscr{L}(M)=\{\{1\}, M\}$.
- If M is idempotent-generated, then $\mathscr{L}(M)=\{\{1\}, M\}$.

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\begin{aligned}
\mathscr{L}(M) & =\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\} \\
& =\left\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_{L}(M), \ldots, \mathbb{I}(M)\right\} .
\end{aligned}
$$

- $|\mathscr{L}(M)| \leq 15$.
- If M is a group, then $\mathscr{L}(M)=\{\{1\}, M\}$.
- If M is idempotent-generated, then $\mathscr{L}(M)=\{\{1\}, M\}$.
- What else could $\mathscr{L}(M)$ be?

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\begin{aligned}
\mathscr{L}(M) & =\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\} \\
& =\left\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_{L}(M), \ldots, \mathbb{I}(M)\right\} .
\end{aligned}
$$

- $|\mathscr{L}(M)| \leq 15$.
- If M is a group, then $\mathscr{L}(M)=\{\{1\}, M\}$.
- If M is idempotent-generated, then $\mathscr{L}(M)=\{\{1\}, M\}$.
- What else could $\mathscr{L}(M)$ be?
- Observation: $\mathbb{G}_{L}(M)=\mathbb{G}(M) \Leftrightarrow \mathbb{G}_{R}(M)=\mathbb{G}(M)$.

The lattice $\mathscr{L}(M)$

- For a monoid M, define

$$
\begin{aligned}
\mathscr{L}(M) & =\{\mathbb{X}(M): \mathbb{X} \in \mathscr{F}\} \\
& =\left\{\mathbb{O}(M), \mathbb{E}(M), \mathbb{G}(M), \mathbb{G}_{L}(M), \ldots, \mathbb{I}(M)\right\} .
\end{aligned}
$$

- $|\mathscr{L}(M)| \leq 15$.
- If M is a group, then $\mathscr{L}(M)=\{\{1\}, M\}$.
- If M is idempotent-generated, then $\mathscr{L}(M)=\{\{1\}, M\}$.
- What else could $\mathscr{L}(M)$ be?
- Observation: $\mathbb{G}_{L}(M)=\mathbb{G}(M) \Leftrightarrow \mathbb{G}_{R}(M)=\mathbb{G}(M)$.
- $\mathscr{L}(M)$ simplifies greatly for such M.

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M)=\mathbb{G}(M)=\mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

When $\mathbb{G}_{L}(M) \neq \mathbb{G}(M) \neq \mathbb{G}_{R}(M)$

Classification of lattices

Theorem (inspired by the Old White Swan)

Up to isomorphism, the possible lattices $\mathscr{L}(M)$ are:

-
-

Classification of lattices

Theorem (inspired by the Old White Swan)

Up to isomorphism, the possible lattices $\mathscr{L}(M)$ are:

Classification of lattices

Theorem (inspired by the Old White Swan)

Up to isomorphism, the possible lattices $\mathscr{L}(M)$ are:

Thank you

- Idempotents and one-sided units in infinite partial Brauer monoids
- J. Algebra 534 (2019) 427-482
- A semigroup of functors on the category of monoids
- Coming soon...

