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Def 1 Let S be a partially ordered monoid (shortly pomonoid). A right S-

poset is a poset A together with an action A × S → A, (a, s) 7→ as, such

that

1. (as)t = a(st),

2. a1 = a,

3. a ≤ a′ =⇒ as ≤ a′s,

4. s ≤ t =⇒ as ≤ at

for every a, a′ ∈ A, s, t ∈ S.

Similarly left S-posets are defined. S-poset morphisms are order and action

preserving mappings. Right (left) S-posets and their morphisms form a cat-

egory PosS (SPos), where isomorphisms are surjective mappings that preserve

and reflect order.

The category SPos (similarly PosS) is a Pos-category (or a category enriched

over the category Pos of posets), where the morphism sets SPos(A, B), SA, SB ∈
SPos are posets with respect to pointwise order.



If A and B are Pos-categories then a Pos-functor F : A → B has to preserve

the order of morphism posets. We shall call such functors pofunctors. If A
and B are Pos-categories, A is small and F, G : A → B are pofunctors then the

set Nat(F, G) of natural transformations from F to G is a poset with respect

to the order

(αA)A∈A ≤ (βA)A∈A ⇐⇒ αA ≤ βA for every A ∈ A in the poset B(F (A), G(A)).

In enriched categories (or 2-categories) one can consider weighted (or in-

dexed) limits. In the case of the category SPos, this general definition takes

the following form.

Def 2 Let S be a pomonoid, D a small Pos-category with the object set I,

F : D → SPos and G : D → Pos pofunctors. A Pos-limit of F weighted by G is

a pair
(

SL, (lxi )
x∈G(i)
i∈I

)
, where lxi : L → F (i) are left S-poset morphisms and

1. (a) x ≤ x′ implies lxi ≤ lx
′

i for every i ∈ I and x, x′ ∈ G(i);

(b) F (d)lxi0 = lG(d)(x)
i1

for every d : i0 → i1 in D and x ∈ G(i0);

2. for every SP ∈ SPos and family (px
i )

x∈G(i)
i∈I of left S-poset morphisms px

i :

P → F (i) with properties 1, there is a unique left S-poset morphism

ϕ : P → L such that lxi ϕ = px
i for every i ∈ I and x ∈ G(i).



We write
(

SL, (lxi )
x∈G(i)
i∈I

)
≈ limG F .
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Weighted limits always exist in the category SPos (or Pos, which is just {1}Pos),

as shown by the following canonical construction.



It is easy to see that the poset Nat(G, UF ), where U : SPos → Pos is the forgetful

functor, is an S-poset if the left S-action is given by

sf := (sfi)i∈I,

where s ∈ S, f = (fi)i∈I ∈ Nat(G, UF ), and the mapping sfi : G(i) → F (i) is

defined by

(sfi)(x) := sfi(x),

x ∈ G(i). For every i ∈ I and x ∈ G(i) we define a mapping lxi : Nat(G, UF ) →
F (i) by

lxi (f) := fi(x),

f = (fi)i∈I ∈ Nat(G, UF ).

Proposition 1 The pair
(
Nat(G, UF ), (lxi )

x∈G(i)
i∈I

)
is a Pos-limit of F weighted

by G.

All usual limits (e.g. products, equalizers) are instances of weighted limits.

We shall also need inserters and comma-objects, which have been introduced

in [9] for arbitrary 2-categories. Note that inserters (comma-objects) in SPos

were called subequalizers (subpullbacks) in [4].



Def 3 An inserter of a pair (f, g) of morphisms A → B in SPos is a pair (E, ι),

where ι ∈ SPos(E, A) is such that

1. fι ≤ gι,

2. if ι′ ∈ SPos(E′, A) is another morphism such that fι′ ≤ gι′ then there exists

a unique morphism ϕ ∈ SPos(E′, E) such that ιϕ = ι′.

As a canonical inserter one can take

E := {a ∈ A | f(a) ≤ g(a)} ⊆ A.
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Def 4 A comma-object of a pair (f, g) of morphisms f ∈ SPos(A, C), g ∈
SPos(B, C) is a triple (P, p1, p2), where p1 ∈ SPos(P, A), p2 ∈ SPos(P, B) are such

that

1. fp1 ≤ gp2,

2. if q1 ∈ SPos(Q, A), q2 ∈ SPos(Q, B) are another morphisms such that fq1 ≤
gq2 then there exists a unique morphism ϕ ∈ SPos(Q, P ) such that p1ϕ = q1

and p2ϕ = q2.
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If AS ∈ PosS and SB ∈ SPos then we can consider a preorder θ on the set A×B,

defined by (a, b)θ(a′, b′) if and only if (a, b) = (a′, b′) or

a ≤ a1s1

a1t1 ≤ a2s2 s1b ≤ t1b2
· · · · · ·

antn ≤ a′ snbn ≤ tnb′

for some ai ∈ A, bi ∈ B, si, ti ∈ S. Then θ ∩ θ−1 is an equivalence relation and

A⊗S B := (A×B)/(θ ∩ θ−1) = {a⊗ b | a ∈ A, b ∈ B}
is a poset with order

a⊗ b ≤ a′ ⊗ b′ ⇐⇒ (a, b)θ(a′, b′).

This poset A⊗S B is called the tensor product of AS and SB. Note that

as⊗ b = a⊗ sb

for every a ∈ A, b ∈ B and s ∈ S.

For a fixed S-poset AS one can consider the pofunctor A ⊗ − : SPos → Pos of

tensor multiplication, defined by

(A⊗−)(SB) := A⊗S B,

(A⊗−)(f) := 1A ⊗ f : A⊗S B → A⊗S C : a⊗ b 7→ a⊗ f(b),

f ∈ SPos(B, C).



Def 5 We say that a right S-poset AS is limit flat (inserter flat, comma-

object flat, product flat) if the functor A ⊗ − : SPos → Pos preserves small

weighted limits (resp. inserters, comma-objects, small products).

Theorem 1 The following assertions are equivalent for a non-empty right

S-poset AS:

1. AS is limit flat;

2. AS is inserter flat and product flat;

3. AS is cyclic and satisfies the following condition: for every non-empty set

K and all families (sk)k∈K, (tk)k∈K ∈ SK

(E∞) (∀k ∈ K)(ask ≤ atk) ⇒ (∃e ∈ S)(a = ae ∧ (∀k ∈ K)(esk ≤ etk));

4. AS is a cyclic projective.



Next we consider preservation of certain finite weighted limits.

We shall use the following conditions on a right S-poset AS that first appear

in [4]:

(E) (∀a ∈ A)(∀s, s′ ∈ S) (as ≤ as′ ⇒ (∃a′ ∈ A)(∃u ∈ S)(a = a′u ∧ us ≤ us′)) ,

(P ) (∀a, a′ ∈ A)(∀s, s′ ∈ S)(as ≤ a′s′ ⇒
(∃a′′ ∈ A)(∃u, u′ ∈ S)(a = a′′u ∧ a′ = a′′u′ ∧ us ≤ u′s′)).

An S-poset AS is called locally cyclic if for every a, a′ ∈ A there exists b ∈ A

such that a, a′ ∈ bS.

The notion of finite weighted (or indexed) limit is introduced in [7]. In the

case of Pos-limits it sounds as follows.

Def 6 A weight G : D → Pos is called finite if

1. D is a finite category,

2. G(i) is a finite poset for every i ∈ I.

A finite weighted limit is one whose weight is finite.



For a functor G : D → Pos we can consider its category of elements (or

Grothendieck category). The objects of this category el(G) are pairs (x, i),

where i ∈ I and x ∈ G(i). A morphism (x, i) → (y, j) is a morphism d ∈ D(i, j)

such that G(d)(x) = y.

Among weighted limits, pie-weighted limits play an important role (see [11]).

Def 7 (11) A pofunctor G : D → Pos is called a pie weight if each connected

component of the category el(G) has an initial object.

Since equifiers (see [9] for the definition) are trivial in SPos and Pos, from

Theorem 2.8 of [11] we have the following corollary.

Theorem 2 A pofunctor H : SPos → Pos preserves finite pie-weighted limits if

and only if it preserves finite products and inserters.

We say that an S-poset AS is finite pie-limit flat if the functor A⊗− : SPos →
Pos preserves finite pie-weighted limits.



Def 8 Let ϕ : BS → AS be a surjective S-poset morphism. We say that ϕ is

a 1-pure epimorphism, if

as1 ≤ at1,
. . .

asn ≤ atn,
(1)

a ∈ A, s1, . . . , sn, t1, . . . , tn ∈ S, implies that there exists b ∈ B such that ϕ(b) = a

and

bs1 ≤ bt1,

. . .

bsn ≤ btn.

Def 9 A nonempty category D is called filtered, if

1. for any objects i and i′ there exist an object k and morphisms d : i → k,

d′ : i′ → k;

2. for any morphisms i
d //

d′
// j there exists an object k and a morphism

f : j → k such that fd = fd′.



Lemma 1 (Cf. [5], Theorem 1.2) If θ is a preorder on an S-poset AS com-

patible with action and extending the order of A (i.e. a ≤ a′ implies aθa′) then

σ := θ ∩ θ−1 is an S-poset congruence on A and A/σ is a right S-poset with

respect to natural action and order given by

[a]σ ≤ [a′]σ ⇐⇒ aθa′.

Proposition 2 Let D be a small filtered category with the object set I and

let F : D → PosS be a functor.

1. The relation θ, defined by

aθa′ ⇐⇒ (∃j ∈ I)(∃d : i → j)(∃d′ : i′ → j)(F (d)(a) ≤ F (d′)(a′)),

a ∈ F (i), a′ ∈ F (i′), is a compatible order extending preorder on
⊔

i∈I F (i).

2. If σ = θ ∩ θ−1 then, for every a ∈ F (i) and a′ ∈ F (i′),

aσa′ ⇐⇒ (∃j ∈ I)(∃d : i → j)(∃d′ : i′ → j)(F (d)(a) = F (d′)(a′)).

3. A colimit of F can be constructed as a pair (A, (ϕi)i∈I), where A =(⊔
i∈I F (i)

)
/σ and the morphisms ϕi : F (i) → A are defined by ϕi(x) := [x].



For a subset H ⊆ A× A we introduce a binary relation β(H) on A by setting

xβ(H)y if and only if x = y or there exist h1, . . . , hn, h′1, . . . , h
′
n ∈ A and s1, . . . , sn

such that

x ≤ h1s1 h′2s2 ≤ h3s3 h′n−1sn−1 ≤ hnsn

h′1s1 ≤ h2s2 · · · h′nsn ≤ y

and (hi, h′i) ∈ H for every i = 1, . . . , n. Then the relation ν(H), defined by

xν(H)y ⇐⇒ xβ(H)y and yβ(H)x

will be an S-poset congruence on AS, which we call the congruence induced

by the set H (see [4]). We write ν(a, a′) for ν({(a, a′)}).



Theorem 3 The following assertions are equivalent for a non-empty right

S-poset AS:

1. AS is finite pie-limit flat;

2. AS is inserter flat and locally cyclic;

3. AS is inserter flat, comma-object flat and locally cyclic;

4. AS is locally cyclic and satisfies condition (E);

5. AS is locally cyclic and every surjective S-poset morphism BS → AS is a

1-pure epimorphism;

6. AS is locally cyclic and every S-poset morphism S/ν(H) → AS, where H

is finite, factors through SS;

7. AS is a filtered colimit of S-posets that are isomorphic to SS.
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