Tensor products and preservation of weighted limits, for S-posets

Valdis Laan

April 17, 2009

Def 1 Let *S* be a partially ordered monoid (shortly pomonoid). A **right** *S*-**poset** is a poset *A* together with an action $A \times S \rightarrow A$, $(a, s) \mapsto as$, such that

- 1. (as)t = a(st),
- 2. a1 = a,
- 3. $a \leq a' \Longrightarrow as \leq a's$,
- 4. $s \leq t \implies as \leq at$

for every $a, a' \in A$, $s, t \in S$.

Similarly left *S*-posets are defined. *S*-poset morphisms are order and action preserving mappings. Right (left) *S*-posets and their morphisms form a category Pos_S ($_SPos$), where isomorphisms are surjective mappings that preserve and reflect order.

The category $_{S}$ Pos (similarly Pos $_{S}$) is a Pos-category (or a category enriched over the category Pos of posets), where the morphism sets $_{S}$ Pos(A, B), $_{S}A$, $_{S}B \in _{S}$ Pos are posets with respect to pointwise order.

If \mathcal{A} and \mathcal{B} are Pos-categories then a Pos-functor $F : \mathcal{A} \to \mathcal{B}$ has to preserve the order of morphism posets. We shall call such functors **pofunctors**. If \mathcal{A} and \mathcal{B} are Pos-categories, \mathcal{A} is small and $F, G : \mathcal{A} \to \mathcal{B}$ are pofunctors then the set Nat(F, G) of natural transformations from F to G is a poset with respect to the order

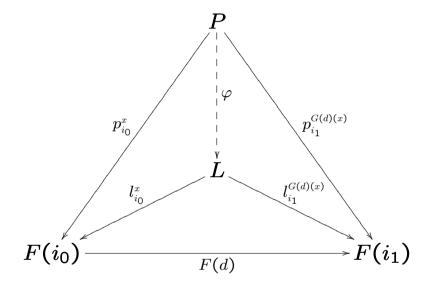
 $(\alpha_A)_{A \in \mathcal{A}} \leq (\beta_A)_{A \in \mathcal{A}} \iff \alpha_A \leq \beta_A$ for every $A \in \mathcal{A}$ in the poset $\mathcal{B}(F(A), G(A))$.

In enriched categories (or 2-categories) one can consider weighted (or indexed) limits. In the case of the category $_SPos$, this general definition takes the following form.

Def 2 Let *S* be a pomonoid, \mathcal{D} a small Pos-category with the object set *I*, $F: \mathcal{D} \to {}_{S}$ Pos and $G: \mathcal{D} \to$ Pos pofunctors. A Pos-**limit of** *F* weighted by *G* is a pair $\left({}_{S}L, (l_{i}^{x})_{i\in I}^{x\in G(i)}\right)$, where $l_{i}^{x}: L \to F(i)$ are left *S*-poset morphisms and

1. (a)
$$x \leq x'$$
 implies $l_i^x \leq l_i^{x'}$ for every $i \in I$ and $x, x' \in G(i)$;
(b) $F(d)l_{i_0}^x = l_{i_1}^{G(d)(x)}$ for every $d : i_0 \to i_1$ in \mathcal{D} and $x \in G(i_0)$;

2. for every ${}_{S}P \in {}_{S}Pos$ and family $(p_{i}^{x})_{i\in I}^{x\in G(i)}$ of left *S*-poset morphisms p_{i}^{x} : $P \to F(i)$ with properties 1, there is a unique left *S*-poset morphism $\varphi: P \to L$ such that $l_{i}^{x}\varphi = p_{i}^{x}$ for every $i \in I$ and $x \in G(i)$. We write $\left({}_{S}L, (l_{i}^{x})_{i\in I}^{x\in G(i)}\right) \approx \lim_{G} F.$



Weighted limits always exist in the category $_{S}$ Pos (or Pos, which is just $_{\{1\}}$ Pos), as shown by the following canonical construction.

It is easy to see that the poset Nat(G, UF), where $U : {}_{S}Pos \rightarrow Pos$ is the forgetful functor, is an S-poset if the left S-action is given by

$$sf := (sf_i)_{i \in I},$$

where $s \in S$, $f = (f_i)_{i \in I} \in Nat(G, UF)$, and the mapping $sf_i : G(i) \to F(i)$ is defined by

$$(sf_i)(x) := sf_i(x),$$

 $x \in G(i)$. For every $i \in I$ and $x \in G(i)$ we define a mapping $l_i^x : Nat(G, UF) \rightarrow F(i)$ by

$$l_i^x(f) := f_i(x),$$

 $f = (f_i)_{i \in I} \in \mathsf{Nat}(G, UF).$

Proposition 1 The pair $\left(\operatorname{Nat}(G, UF), (l_i^x)_{i \in I}^{x \in G(i)}\right)$ is a Pos-limit of F weighted by G.

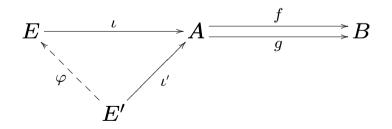
All usual limits (e.g. products, equalizers) are instances of weighted limits. We shall also need inserters and comma-objects, which have been introduced in [9] for arbitrary 2-categories. Note that inserters (comma-objects) in $_S$ Pos were called subequalizers (subpullbacks) in [4].

Def 3 An **inserter** of a pair (f,g) of morphisms $A \to B$ in _SPos is a pair (E,ι) , where $\iota \in {}_{S}\mathsf{Pos}(E,A)$ is such that

- 1. $f\iota \leq g\iota$,
- 2. if $\iota' \in {}_{S}\mathsf{Pos}(E', A)$ is another morphism such that $f\iota' \leq g\iota'$ then there exists a unique morphism $\varphi \in {}_{S}\mathsf{Pos}(E', E)$ such that $\iota \varphi = \iota'$.

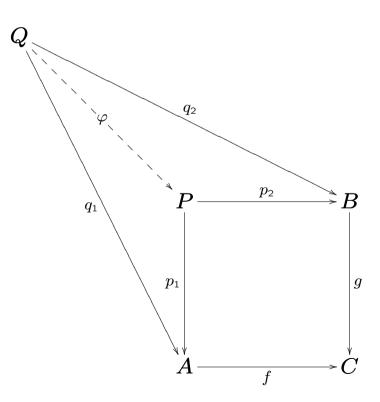
As a canonical inserter one can take

$$E := \{a \in A \mid f(a) \le g(a)\} \subseteq A.$$



Def 4 A comma-object of a pair (f,g) of morphisms $f \in {}_{S}\text{Pos}(A,C)$, $g \in {}_{S}\text{Pos}(B,C)$ is a triple (P,p_{1},p_{2}) , where $p_{1} \in {}_{S}\text{Pos}(P,A)$, $p_{2} \in {}_{S}\text{Pos}(P,B)$ are such that

- 1. $fp_1 \le gp_2$,
- 2. if $q_1 \in {}_{S}\mathsf{Pos}(Q, A)$, $q_2 \in {}_{S}\mathsf{Pos}(Q, B)$ are another morphisms such that $fq_1 \leq gq_2$ then there exists a unique morphism $\varphi \in {}_{S}\mathsf{Pos}(Q, P)$ such that $p_1\varphi = q_1$ and $p_2\varphi = q_2$.



If $A_S \in \text{Pos}_S$ and ${}_SB \in {}_S\text{Pos}$ then we can consider a preorder θ on the set $A \times B$, defined by $(a, b)\theta(a', b')$ if and only if (a, b) = (a', b') or

for some $a_i \in A$, $b_i \in B$, $s_i, t_i \in S$. Then $\theta \cap \theta^{-1}$ is an equivalence relation and

$$A \otimes_S B := (A \times B) / (\theta \cap \theta^{-1}) = \{a \otimes b \mid a \in A, b \in B\}$$

is a poset with order

$$a \otimes b \leq a' \otimes b' \iff (a,b)\theta(a',b').$$

This poset $A \otimes_S B$ is called the **tensor product** of A_S and $_SB$. Note that

$$as \otimes b = a \otimes sb$$

for every $a \in A$, $b \in B$ and $s \in S$.

For a fixed S-poset A_S one can consider the pofunctor $A \otimes - : {}_S Pos \to Pos$ of tensor multiplication, defined by

$$\begin{array}{rcl} (A\otimes -)(_{S}B) & := & A\otimes_{S}B, \\ & (A\otimes -)(f) & := & \mathbf{1}_{A}\otimes f : A\otimes_{S}B \to A\otimes_{S}C : a\otimes b \mapsto a\otimes f(b), \\ & f \in {}_{S}\mathsf{Pos}(B,C). \end{array}$$

Def 5 We say that a right *S*-poset A_S is **limit flat (inserter flat, comma-object flat, product flat)** if the functor $A \otimes - : {}_{S}$ Pos \rightarrow Pos preserves small weighted limits (resp. inserters, comma-objects, small products).

Theorem 1 The following assertions are equivalent for a non-empty right S-poset A_S :

- 1. A_S is limit flat;
- 2. A_S is inserter flat and product flat;
- 3. A_S is cyclic and satisfies the following condition: for every non-empty set K and all families $(s_k)_{k \in K}, (t_k)_{k \in K} \in S^K$

 $(E_{\infty}) \quad (\forall k \in K) (as_k \leq at_k) \Rightarrow (\exists e \in S) (a = ae \land (\forall k \in K) (es_k \leq et_k));$

4. A_S is a cyclic projective.

Next we consider preservation of certain finite weighted limits.

We shall use the following conditions on a right S-poset A_S that first appear in [4]:

(E)
$$(\forall a \in A)(\forall s, s' \in S) (as \le as' \Rightarrow (\exists a' \in A)(\exists u \in S)(a = a'u \land us \le us')),$$

$$\begin{array}{ll} (P) & (\forall a,a'\in A)(\forall s,s'\in S)(as\leq a's'\Rightarrow \\ & (\exists a''\in A)(\exists u,u'\in S)(a=a''u\wedge a'=a''u'\wedge us\leq u's')). \end{array}$$

An S-poset A_S is called **locally cyclic** if for every $a, a' \in A$ there exists $b \in A$ such that $a, a' \in bS$.

The notion of finite weighted (or indexed) limit is introduced in [7]. In the case of Pos-limits it sounds as follows.

Def 6 A weight $G : \mathcal{D} \to \mathsf{Pos}$ is called **finite** if

1. ${\cal D}$ is a finite category,

2. G(i) is a finite poset for every $i \in I$.

A finite weighted limit is one whose weight is finite.

For a functor $G : \mathcal{D} \to \text{Pos}$ we can consider its category of elements (or Grothendieck category). The objects of this category el(G) are pairs (x,i), where $i \in I$ and $x \in G(i)$. A morphism $(x,i) \to (y,j)$ is a morphism $d \in \mathcal{D}(i,j)$ such that G(d)(x) = y.

Among weighted limits, pie-weighted limits play an important role (see [11]).

Def 7 (11) A pofunctor $G : \mathcal{D} \to \mathsf{Pos}$ is called a **pie weight** if each connected component of the category $\mathsf{el}(G)$ has an initial object.

Since equifiers (see [9] for the definition) are trivial in $_S$ Pos and Pos, from Theorem 2.8 of [11] we have the following corollary.

Theorem 2 A pofunctor $H : {}_{S}Pos \rightarrow Pos$ preserves finite pie-weighted limits if and only if it preserves finite products and inserters.

We say that an *S*-poset A_S is **finite pie-limit flat** if the functor $A \otimes - : {}_S Pos \rightarrow Pos$ preserves finite pie-weighted limits.

Def 8 Let $\varphi : B_S \to A_S$ be a surjective *S*-poset morphism. We say that φ is a 1-pure epimorphism, if

$$\begin{array}{rcl}
as_1 &\leq & at_1, \\
& \dots & \\
as_n &\leq & at_n,
\end{array} \tag{1}$$

 $a \in A$, $s_1, \ldots, s_n, t_1, \ldots, t_n \in S$, implies that there exists $b \in B$ such that $\varphi(b) = a$ and

$$bs_1 \leq bt_1,$$

 \dots
 $bs_n \leq bt_n.$

Def 9 A nonempty category \mathcal{D} is called **filtered**, if

- 1. for any objects i and i' there exist an object k and morphisms $d: i \rightarrow k$, $d': i' \rightarrow k$;
- 2. for any morphisms $i \xrightarrow[d]{d'} j$ there exists an object k and a morphism $f: j \to k$ such that fd = fd'.

Lemma 1 (Cf. [5], Theorem 1.2) If θ is a preorder on an *S*-poset A_S compatible with action and extending the order of *A* (i.e. $a \leq a'$ implies $a\theta a'$) then $\sigma := \theta \cap \theta^{-1}$ is an *S*-poset congruence on *A* and A/σ is a right *S*-poset with respect to natural action and order given by

$$[a]_{\sigma} \leq [a']_{\sigma} \Longleftrightarrow a\theta a'.$$

Proposition 2 Let \mathcal{D} be a small filtered category with the object set I and let $F : \mathcal{D} \to \mathsf{Pos}_S$ be a functor.

1. The relation θ , defined by

 $a heta a' \Longleftrightarrow (\exists j \in I)(\exists d : i
ightarrow j)(\exists d' : i'
ightarrow j)(F(d)(a) \leq F(d')(a')),$

 $a \in F(i)$, $a' \in F(i')$, is a compatible order extending preorder on $\bigsqcup_{i \in I} F(i)$.

2. If $\sigma = \theta \cap \theta^{-1}$ then, for every $a \in F(i)$ and $a' \in F(i')$,

 $a\sigma a' \iff (\exists j \in I)(\exists d : i \to j)(\exists d' : i' \to j)(F(d)(a) = F(d')(a')).$

3. A colimit of F can be constructed as a pair $(A, (\varphi_i)_{i \in I})$, where $A = (\bigsqcup_{i \in I} F(i)) / \sigma$ and the morphisms $\varphi_i : F(i) \to A$ are defined by $\varphi_i(x) := [x]$.

For a subset $H \subseteq A \times A$ we introduce a binary relation $\beta(H)$ on A by setting $x\beta(H)y$ if and only if x = y or there exist $h_1, \ldots, h_n, h'_1, \ldots, h'_n \in A$ and s_1, \ldots, s_n such that

and $(h_i, h'_i) \in H$ for every i = 1, ..., n. Then the relation $\nu(H)$, defined by

$$x\nu(H)y \iff x\beta(H)y \text{ and } y\beta(H)x$$

will be an *S*-poset congruence on A_S , which we call **the congruence induced** by the set *H* (see [4]). We write $\nu(a, a')$ for $\nu(\{(a, a')\})$. **Theorem 3** The following assertions are equivalent for a non-empty right S-poset A_S :

- 1. A_S is finite pie-limit flat;
- 2. A_S is inserter flat and locally cyclic;
- 3. A_S is inserter flat, comma-object flat and locally cyclic;
- 4. A_S is locally cyclic and satisfies condition (E);
- 5. A_S is locally cyclic and every surjective S-poset morphism $B_S \rightarrow A_S$ is a 1-pure epimorphism;
- 6. A_S is locally cyclic and every S-poset morphism $S/\nu(H) \rightarrow A_S$, where H is finite, factors through S_S ;
- 7. A_S is a filtered colimit of S-posets that are isomorphic to S_S .

References

- 1. F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Cambridge University Press, Cambridge, 1994.
- 2. S. Bulman-Fleming, *Flatness properties of S-posets: an overview*, Semigroups, Acts and Categories, with Applications to Graphs (Tartu, 2007), Estonian Mathematical Society, Tartu, 2008, 28–40.
- 3. S. Bulman-Fleming and V. Laan, *Tensor products and preservation of limits, for acts over monoids*, Semigroup Forum **63** (2001), 161–179.
- 4. S. Bulman-Fleming and V. Laan, *Lazard's theorem for S-posets*, Math. Nachr. **278** (2005), 1743–1755.
- 5. G. Czédli and A. Lenkehegyi, *On classes of ordered algebras and quasi*order distributivity, Acta Sci. Math. (Szeged) **46** (1983), 41–54.
- 6. Y. Katsov, *On subpullback and pullback flat, and subflat S-posets*, Semigroups, Acts and Categories, with Applications to Graphs (Tartu, 2007), Estonian Mathematical Society, Tartu, 2008, 67–78.

- 7. G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge University Press, 1982.
- 8. G. M. Kelly, *Structures defined by finite limits in the enriched context I*, Cahiers Topologie Géom. Différentielle **23** (1982), 3–42.
- 9. G. M. Kelly, *Elementary observations on 2-categorical limits*, Bull. Austral. Math. Soc. **39** (1989), 301-317.
- 10. S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York, 1998.
- 11. J. Power and E. Robinson, *A characterization of pie limits*, Math. Proc. Camb. Phil. Soc. **110** (1991), 33–47.
- 12. X. Shi, Zh. Liu, F. Wang and S. Bulman-Fleming, *Indecomposable, projective and flat S-posets*, Comm. Algebra **33** (2005), 235–251.