Ends for Monoids and Semigroups

David A. Jackson ${ }^{1}$ Vesna Kilibarda ${ }^{2}$
${ }^{1}$ Department of Mathematics
Saint Louis University, USA
${ }^{2}$ Department of Mathematics
Indiana University Northwest, USA

April 19, 2009

Introduction

Ends for Graphs and Digraphs
Cayley Digraphs for Semigroups and Monoids

Ends for Finitely Generated Semigroups and Monoids Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

Main Results

- If G is finitely generated infinite group, then the number of ends of G is $\mathbf{1 , 2}$ or ∞.
If \mathbf{H} is a subgroup of finite index in \mathbf{G} then \mathbf{G} and \mathbf{H} have the same number of ends.
(Cohen [2], Dunwoody[3], Schupp [15], Stallings [18, 19])
- For direct products and for many other semidirect products of finitely generated infinite monoids, the right Cayley digraph of the semidirect product has 1 end.
For a finitely generated subsemigroup of a free semigroup the number of ends is $\mathbf{1}$ or ∞.

Basic Definitions

- Graph $\Gamma=\left(V, E, \iota, \tau,{ }^{-1}\right)$
- Digraph $\Gamma=(V, E, \iota, \tau)$
- For \mathfrak{F} a subset of V, we write $\Gamma-\mathfrak{F}$ for the full subgraph of「 on $V-\mathfrak{F}$.
- Functor from $\Gamma=(V, E, \iota, \tau)$ to $\widehat{\Gamma}=\left(V, E \cup E^{-1}, \iota, \tau,{ }^{-1}\right)$

Walks, Paths, Geodesics

- A (positive) walk ω of length n is a sequence $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ such that $\tau\left(e_{i}\right)=\iota\left(e_{i+1}\right)$ for $1 \leq i<n$. (We often write $\left.\omega=e_{1} e_{2} \ldots e_{n}\right)$
- A walk is a path if all its vertices are distinct.
- The distance, $d_{\Gamma}\left(v_{1}, v_{2}\right)$, between v_{1} and v_{2} in Γ, is the length of the shortest path in Γ from v_{1} to v_{2}.
- A (positive) path of minimal length from v_{1} to v_{2} in Γ is a (di)geodesic in Γ.

Unbounded Paths and Infinite Components

- A graph 「 has unbounded paths (unbounded geodesics) if for every natural number n there is a path (geodesic) of length n in Γ.
- A graph Γ is connected if there is a path in Γ from any vertex v_{1} to any vertex v_{2}. We will define a digraph Γ to be connected if $\widehat{\Gamma}$ is connected.
- A component of a graph or of a digraph Γ is a maximal connected subgraph of Γ.

Number of Ends of a Graph

- For Γ, a graph (digraph) and \mathfrak{F}, a finite set of vertices of Γ, we define for various subscripts $x, \mathfrak{C}_{x}(\Gamma-\mathfrak{F})$ a set of "infinite" components of $\Gamma-\mathfrak{F}$.
- For each subscript \mathbf{x}, we will define $\mathrm{e}_{\times}(\Gamma)$, a number of ends of 「 by

$$
\mathrm{e}_{x}(\Gamma)=\sup _{\mathfrak{F} \subseteq V, \mathfrak{F} \text { finite }}\left|\mathfrak{C}_{x}(\Gamma-\mathfrak{F})\right| .
$$

- There are numerous equivalent definitions for the number of ends for a finitely generated group (Cohen [2], Dunwoody[3], Schupp [15], Stallings [18, 19]).

Variations for Number of Ends

- $\mathfrak{C}_{\infty}(\Gamma)=$
$\{C: C$ is a component of Γ having infinitely many vertices $\}$
- $\mathfrak{C}_{p}(\Gamma)=$
$\{C: C$ is a component of Γ having unbounded paths $\}$
- $\mathfrak{C}_{g}(\Gamma)=$
$\{C: C$ is a component of Γ having unbounded geodesics $\}$
- $\mathfrak{C}_{*}(\Gamma)=$
\{ $C: C$ contains a vertex which initiates unbounded paths $\}$
- $\mathfrak{C}_{\dagger}(\Gamma)=$
\{C:
C contains a vertex that initiates unbounded geodesics\}

Example 1

Figure: Γ_{r}, Γ_{a} and Γ_{s}

Example 1

Example 1

- $\hat{\Gamma}_{r}=\hat{\Gamma}_{a}=\hat{\Gamma}_{s}$, so that $\mathrm{e}_{x}\left(\Gamma_{r}\right)=\mathrm{e}_{x}\left(\Gamma_{a}\right)=\mathrm{e}_{x}\left(\Gamma_{s}\right)=2$ for any graph subscript \mathbf{x}.
- For Γ_{r}, we observe that $\mathrm{e}_{+p}\left(\Gamma_{r}\right)=\mathrm{e}_{\delta}\left(\Gamma_{r}\right)=2$, while $\mathrm{e}_{\vec{*}}\left(\Gamma_{r}\right)=\mathrm{e}_{\vec{\delta}}\left(\Gamma_{r}\right)=\mathrm{e}_{\overleftarrow{乛}^{*}}\left(\Gamma_{r}\right)=\mathrm{e}_{\overleftarrow{\delta}}\left(\Gamma_{r}\right)=1$.
- Since no positive path in Γ_{a} has length greater than 1, $\mathrm{e}_{x}\left(\Gamma_{a}\right)=0$ for every digraph subscript \mathbf{x}.
- Similarly, $\mathrm{e}_{+p}\left(\Gamma_{s}\right)=\mathrm{e}_{\delta}\left(\Gamma_{s}\right)=\mathrm{e}_{\overleftarrow{*}}\left(\Gamma_{s}\right)=\mathrm{e}_{\overleftarrow{\delta}}\left(\Gamma_{s}\right)=1$, while $\mathrm{e}_{\vec{*}}\left(\Gamma_{s}\right)=\mathrm{e}_{\vec{\delta}}\left(\Gamma_{s}\right)=0$.

Graph and Digraph Definitions of Ends

Figure: Some subset inclusions for \mathfrak{C}_{∞}

- Cayley graphs of groups are a fundamental tool in combinatorial group theory (see Lyndon and Schupp [10] and Magnus, Karrass, and Solitar [11]).
- Cayley graphs of groups represent a link between topology, graph theory, and automata theory.
- Combinatorial properties of Cayley graphs of monoids were studied by Zelinka [20] and by Kelarev, Praeger, and Quinn in [6, 7, 8]
- Cayley graphs of automatic monoids were studied by Silva and Steinberg in [16, 17]
- Logical aspects of Cayley graphs of monoids were studied by Kuske and Lohrey in [9]

Right and Left Cayley Digraphs

T a semigroup and $X \subseteq T$ a set of semigroup generators for T

- The right Cayley digraph for T with respect to X is the digraph $\Gamma_{r}(T, X)=(V, E, \iota, \tau)$ where $V=T$, $E=T \times X=\{(t, x): t \in T, x \in X\}, \iota((t, x))=t$ and $\tau((t, x))=t x$.

$$
t \xrightarrow{x} t x
$$

- the left Cayley digraph for T with respect to X is the digraph $\ell(X, T)=(V, E, \iota, \tau)$ where $V=T$, $E=X \times T=\{(x, t): x \in X, t \in T\} \iota((x, t))=t$ and $\tau((x, t))=x t$.

$$
t \xrightarrow{x} x t
$$

Right Cayley Digraphs for the Free Monoid $F(a, b)$ and the Free Commutative Monoid $M=\langle a, b: a b=b a\rangle$

Ends for Graphs and Digraphs

Cayley Digraphs for Semigroups and Monoids

Right Cayley Digraph for $M=\left\langle x, t: x t=t, t^{2}=t\right\rangle$

Ends for Graphs and Digraphs

Cayley Digraphs for Semigroups and Monoids

$$
\text { Left Cayley Digraph for } M=\left\langle x, t: x t=t, t^{2}=t\right\rangle
$$

Ends for Graphs and Digraphs

Left and Right Cayley Digraphs for $M=\langle a, b: b a=a\rangle$

Left digraph

Right digraph

Left and Right Cayley Digraphs for Bicyclic Monoid $M=\langle a, b: a b=1\rangle$

- Lemma 2

Let X be a finite set of monoid generators for the monoid M and Γ be the right Cayley digraph, $\Gamma_{r}(M, X)$. If \mathfrak{F} is any finite set of vertices of Γ and \mathbf{C} is an infinite component of $\boldsymbol{\Gamma}-\mathfrak{F}$, then there is a vertex $\hat{\mathbf{v}}$ in \mathbf{C} which initiates unbounded digeodesics.

- Corollary 3
$\mathrm{e}_{\mathrm{x}}(\Gamma)=\mathrm{e}_{\infty}(\Gamma)$ if $\mathrm{x} \in\{p, g, *, \dagger,+p, \delta, \vec{*}, \vec{\delta}\}$.
- Lemma 4

For a monoid M and its finite subset $\mathfrak{F}, \Gamma-\mathfrak{F}$ has at most $1+|X||\mathfrak{F}|$ components.

- FACTS:
- $e_{\infty}(\Gamma) \geq 1$ for infinite monoids.
- Let \mathfrak{F} and $\hat{\mathfrak{F}}$ be finite subsets of M with $\mathfrak{F} \subseteq \hat{\mathfrak{F}}$. Then $\left|\mathfrak{C}_{\infty}(\Gamma-\mathfrak{F})\right| \leq\left|\mathfrak{C}_{\infty}(\Gamma-\hat{\mathfrak{F}})\right|$.
- For every natural number n, define \mathfrak{F}_{n} to be $\left\{m \in M: L_{X}(m) \leq n\right\}$. Then \mathfrak{F}_{n} is finite and $\mathrm{e}_{\infty}(\Gamma)=\lim _{n \rightarrow \infty}\left|\mathfrak{C}_{\infty}\left(\Gamma-\mathfrak{F}_{n}\right)\right|$.

Ends are Independent of the Set of Generators

Lemma 5

If X and Y are finite sets of monoid generators for the monoid M, then $\mathrm{e}_{\infty}\left(\Gamma_{r}(M, X)\right)=\mathrm{e}_{\infty}\left(\Gamma_{r}(M, Y)\right)$ and
$\mathrm{e}_{\infty}(\ell \Gamma(X, M))=\mathrm{e}_{\infty}(\ell \Gamma(Y, M))$.

Proof.

- It suffices to prove that $\mathrm{e}_{\infty}\left(\Gamma_{r}(M, X)\right)=\mathrm{e}_{\infty}\left(\Gamma_{r}(M, X \cup Y)\right)$
- Reduce to the case that $\mathrm{e}_{\infty}\left(\Gamma_{r}(M, X)\right)=\mathrm{e}_{\infty}\left(\Gamma_{r}(M, X \cup\{y\})\right)$ where $y \in Y$ by using induction on $|X \cup Y|-|X|$. For brevity, write $\Gamma=\Gamma_{r}(S, X)$ and $\Gamma^{\prime}=\Gamma_{r}(S, X \cup\{y\})$.
- We consider two cases, when $\mathrm{e}_{\infty}(\Gamma)$ is finite or infinite.
- We first show $e_{\infty}(\Gamma) \leq e_{\infty}\left(\Gamma^{\prime}\right)$ in the finite case.

Continuation of the Proof that Ends are Independent of the Set of Generators

- Second, we exhibit a finite set \mathfrak{F}_{2} such that $\Gamma^{\prime}-\mathfrak{F}_{2}$ has $\mathrm{e}_{\infty}(\Gamma)$ infinite components, proving the equality in the finite case.
- Last, when $\mathrm{e}_{\infty}(\Gamma)$ is infinite, we show that for any natural number n, there is a finite subset \mathfrak{F} of M such that $\Gamma^{\prime}-\mathfrak{F}$ has at least n infinite components.

- Definition 6

For a finitely generated semigroup S, we define $\mathcal{E}_{\mathbf{r}}(\mathbf{S})$ and $\mathcal{E}_{\ell}(\mathbf{S})$ by $\mathcal{E}_{\mathbf{r}}(\mathbf{S})=\mathbf{e}_{\infty}\left(\Gamma_{r}(\mathbf{S}, \mathbf{X})\right)$ and $\mathcal{E}_{\ell}(\mathbf{S})=\mathbf{e}_{\infty}(\ell \Gamma(\mathbf{S}, \mathbf{X}))$ for any finite set \mathbf{X} of semigroup generators for \mathbf{S}.

- When M is a finitely generated monoid, the values for $\mathcal{E}_{r}(M)$ and $\mathcal{E}_{\ell}(M)$ do not change if we consider M as a semigroup rather than as a monoid.
- It is usual to consider a Cayley graph rather than a Cayley digraph for a group. Typically, these are the right Cayley graphs (isomorphic to the left Cayley graphs)which are always locally finite.
- If a group is considered as a monoid, then its number of ends (considered as a group) is equal to both of the monoid values $\mathcal{E}_{r}(G)$ and $\mathcal{E}_{\ell}(G)$.
- Definition 7

For any semigroup (S, \cdot) the dual semigroup $S^{\circ p}=(S, *)$ has the same set of elements as S and has multiplication $*$ defined by $s_{1} * s_{2}=s_{2} \cdot s_{1}$.

- Dual Semigroup Proposition

If the semigroup S is isomorphic to $S^{o p}$, then $\mathcal{E}_{r}(S)=\mathcal{E}_{\ell}(S)$.

- Corollary 8

If T is a finitely generated inverse semigroup (or a finitely generated inverse monoid), then $\mathcal{E}_{r}(T)=\mathcal{E}_{\ell}(T)$.

Special Semidirect Product of Monoids

- $M=\left\langle X: R_{2}\right\rangle$ and $T=\left\langle A: R_{1}\right\rangle$ are monoids
- Define $\theta_{\mathbf{T}} \in \operatorname{End}(T)$ as $\theta_{T}(t)=1_{T}, t \in T$ and $\iota_{\boldsymbol{T}}$ as the identity automorphism of T
- $\Phi_{0}: M \rightarrow \operatorname{End}(T)$ takes 1_{M} to ι_{T} and every other element of M to θ_{T}.
- $\hat{M}=T \rtimes_{\Phi_{0}} M=\left\langle A \cup X: R_{1} \cup R_{2} \cup\{(x a, x): a \in A, x \in X\}\right\rangle$
- Layer Lemma

Let T be a finite monoid and M a finitely generated monoid.
Assume that $\mathbf{M}=\mathbf{S}^{\mathbf{1}}$ for some semigroup S. Then
$\mathcal{E}_{r}\left(T \rtimes_{\Phi_{0}} M\right)=|T| \mathcal{E}_{r}(M)$ and $\mathcal{E}_{\ell}\left(T \rtimes_{\Phi_{0}} M\right)=\mathcal{E}_{\ell}(M)$.

Number of Ends for

$$
A_{n}=\left\langle x, t: x t=t, t^{n}=t^{n-1}\right\rangle=T \rtimes_{\Phi_{0}} M
$$

Example 9

- T is monogenic monoid with presentation $T=\left\langle t: t^{n}=t^{n-1}\right\rangle$
- $M=S^{1}$ is infinite monogenic monoid whose left and right Cayley digraphs have $\mathbf{1}$ end
- By Layer Lemma, $\mathcal{E}_{r}\left(A_{n}\right)=|T| \mathcal{E}_{r}(M)=n \cdot 1=\mathbf{n}$ and $\mathcal{E}_{\ell}\left(A_{n}\right)=\mathcal{E}_{\ell}(M)=\mathbf{1}$

Right Cayley Digraph for $A_{2}=\left\langle x, t: x t=t, t^{2}=t\right\rangle$ with 2 Ends

Left Cayley Digraph for $A_{2}=\left\langle x, t: x t=t, t^{2}=t\right\rangle$ with 1 End

Number of Ends for $J_{n, m}=T \rtimes_{\Phi_{0}} A_{n}^{\mathrm{op}}$

Example 10

- T is monogenic monoid of order m
- $A_{n}^{\text {op }}=S^{1}$ is infinite monogenic monoid whose left Cayley graph has \mathbf{n} ends and right Cayley digraphs has $\mathbf{1}$ end
- By Layer Lemma, $\mathcal{E}_{r}\left(T \rtimes_{\Phi_{0}} A_{n}^{\mathrm{op}}\right)=m \cdot \mathcal{E}_{r}\left(A_{n}^{\mathrm{op}}\right)=m \cdot \mathcal{E}_{\ell}\left(A_{n}\right)=\mathbf{m}$ and
- $\mathcal{E}_{\ell}\left(T \rtimes_{\Phi_{0}} A_{n}^{\mathrm{op}}\right)=\mathcal{E}_{\ell}\left(A_{n}^{\mathrm{op}}\right)=\mathcal{E}_{r}\left(A_{n}\right)=\mathbf{n}$

Special Semidirect Products

- Write $\operatorname{Monic}(M)$ for the submonoid of $\operatorname{End}(M)$ consisting of one-to-one endomorphisms.
- Write $\operatorname{End}_{r}(M)$ for $\operatorname{End}(M)$ when functions act on their arguments from right and $\operatorname{End}_{\ell}(M)$ when functions act on their arguments from left.
- If $\Phi: A \rightarrow \operatorname{End}_{\mathrm{r}}(B)$ is a monoid homomorphism, define the monoid semi-direct product $A \ltimes_{\Phi} B$ to have elements $\{(a, b): a \in A, b \in B\}$ and multiplication $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1}^{a_{2}} b_{2}\right)$.
- Similarly, if $\Phi: A \rightarrow \operatorname{End}_{\ell}(B)$ is a monoid homomorphism, we define the monoid semi-direct product $B \rtimes_{\Phi} A$ to have elements $\{(b, a): b \in B, a \in A\}$ and multiplication $\left(b_{1}, a_{1}\right)\left(b_{2}, a_{2}\right)=\left(\left(b_{1}\right)\left({ }^{a_{1}} b_{2}\right), a_{1} a_{2}\right)$.

Special Semidirect Products

- Theorem 11

Suppose that M_{i} is a finitely generated infinite monoid for $i=1,2$. If $\Phi: M_{1} \rightarrow \operatorname{Monic}\left(M_{2}\right)$ is a monoid homomorphism, then $\mathcal{E}_{r}\left(M_{1} \ltimes_{\Phi} M_{2}\right)=\mathcal{E}_{\ell}\left(M_{2} \rtimes_{\Phi} M_{1}\right)=1$.

- Corollary 12

Suppose that G_{i} is a finitely generated infinite group for $i=1,2$. If $\Phi: G_{1} \rightarrow \operatorname{Aut}\left(G_{2}\right)$ is a group automorphism, then the group semidirect product $G_{2} \rtimes_{\Phi} G_{1}$ has one end.

Special Semidirect Products

- Corollary 13

Suppose, for $i=1,2$, that M_{i} is an infinite monoid with a finite set of monoid generators X_{i}. Let $M=M_{1} \times M_{2}$ be the monoid direct product. Then $\mathcal{E}_{r}(M)=\mathcal{E}_{\ell}(M)=1$.

- Proof.

The direct product is a special case of Theorem 11 where Φ takes each element of M_{1} to the identity automorphism of M_{2}.

$$
M=\langle a, b: b a=a\rangle=B \rtimes_{\Phi_{0}} A
$$

Example 14

- In the previous theorem, the hypothesis that Φ has its range in Monic $\left(\mathbf{M}_{\mathbf{2}}\right)$ rather than just in End $\left(M_{2}\right)$ is necessary.
- $\mathcal{E}_{\ell}\left(B \rtimes_{\Phi_{0}} A\right)=\mathcal{E}_{\ell}(A)$ of the Layer Lemma need not hold if B is an infinite monoid.
- Let $A=\langle a\rangle$ and $B=\langle b\rangle$ be free monogenic monoids and $M=A \ltimes_{\Phi_{0}} B$.
- Here $a \Phi_{0}=\theta_{B}$ where $b^{m} \theta_{B}=1_{B}$ for every non-negative integer m, hence θ_{B} is not one-to-one.

$$
\mathcal{E}_{r}\left(A \ltimes_{\Phi_{0}} B\right)=\mathcal{E}_{\ell}\left(A \ltimes_{\Phi_{0}} B\right)=\mathcal{E}_{r}\left(B \rtimes_{\Phi_{0}} A\right)=\mathcal{E}_{\ell}\left(B \rtimes_{\Phi_{0}} A\right)=\infty .
$$

Left and Right Cayley Digraphs for $M=\langle a, b: b a=a\rangle$

Left digraph

0-direct Unions

- Let Λ be an index set and $\left(S_{\lambda}, *_{\lambda}\right)$ be a semigroup for each $\lambda \in \Lambda$. Assume that $S_{\lambda_{1}} \cap S_{\lambda_{2}}=\emptyset$ if $\lambda_{1} \neq \lambda_{2}$ and that 0 is a new element not in $\cup S_{\lambda}$. Define $\vee S_{\lambda}$ to be $\{0\} \cup\left(\bigcup_{\lambda \in \Lambda} S_{\lambda}\right)$ and define a multiplication $*$ on $\vee S_{\lambda}$ by
$s * t= \begin{cases}s *_{\lambda} t & \text { if there exists } \lambda \in \Lambda \text { such that } s \in S_{\lambda} \text { and } t \in S_{\lambda} . \\ 0 & \text { otherwise }\end{cases}$
- For any λ, define S_{λ}^{0} to be the semigroup having elements $\{0\} \cup S_{\lambda}$ with the multiplication $*_{\lambda}$ extended by setting $s *_{\lambda} 0=0 *_{\lambda} s=0 *_{\lambda} 0=0$ for all $s \in S_{\lambda}$. Then $\vee S_{\lambda}$ is the 0 -direct union of the semigroups S_{λ}^{0}. See Clifford and Preston [1, Volume II, page 13], Howie, [5, page 71] or Higgins, [4, page 26].

O-direct Unions

- Lemma 15

Suppose that Λ is a finite set and that $\left\{S_{\lambda}\right\}_{\lambda \in \Lambda}$ is a set of pairwise disjoint, finitely generated semigroups S_{λ}. Then $\vee S_{\lambda}$ is finitely generated, $\mathcal{E}_{\ell}\left(\vee S_{\lambda}\right)=\Sigma_{\lambda \in \Lambda} \mathcal{E}_{\ell}\left(S_{\lambda}\right)$ and $\mathcal{E}_{r}\left(\vee S_{\lambda}\right)=\Sigma_{\lambda \in \Lambda} \mathcal{E}_{r}\left(S_{\lambda}\right)$.

- Example 16

For an arbitrary natural number n, let Λ be an index set with $|\Lambda|=n$ and for each $\lambda \in \Lambda$, let S_{λ} be a finitely generated abelian group with $\mathcal{E}_{\ell}\left(S_{\Lambda}\right)=\mathcal{E}_{r}\left(S_{\Lambda}\right)=1$. For example, take S_{λ} to be the free abelian group of rank $r_{\lambda} \geq 2$. Let $S=\vee S_{\lambda}$. Then S is a finitely generated, completely regular, commutative inverse semigroup with $\mathcal{E}_{r}(S)=\mathcal{E}_{\ell}(S)=n$.

Ends for the additive semigroup \mathbb{N} of natural numbers

- The group versions of the following theorem in Lyndon and Schupp [10, Proposition I.2.17] and Magnus, Karrass, and Solitar [11, Exercise 1.4.6] are easily modified to obtain the semigroup version.
- Lyndon's Theorem
(Mateescu and Salomaa[12, Theorem 2.2]) Suppose that F is the free semigroup on the alphabet A and that $u, v \in F$. If $u v=v u$, then there is an element $w \in F$ and natural numbers m, n such that $u=w^{m}$ and $v=w^{n}$.
- Lemma 17

If S is any subsemigroup of the additive semigroup \mathbb{N} of natural numbers, then $\mathcal{E}_{\ell}(S)=\mathcal{E}_{r}(S)=1$.

Proof that subsemigroups of additive semigroup \mathbb{N} have one end:

- Let S be a subsemigroup of the additive semigroup \mathbb{N}. Since S is commutative, from Dual Semigroup Proposition we must have $\mathcal{E}_{\ell}(S)=\mathcal{E}_{r}(S)$.
- From elementary number theory we know that S contains all but finitely many natural numbers.
- Write $n_{0}-1$ for the greatest natural number that is not in S. Then $S=X_{0} \cup\left\{n \in \mathbb{N}: n \geq n_{0}\right\}$ for some finite set $X_{0} \subseteq \mathbb{N}$.
- S is generated by the finite set $X=X_{0} \cup\left\{n \in \mathbb{N}: n_{0} \leq n<2 n_{0}\right\}$.

Continuation of the proof that subsemigroups of additive semigroup \mathbb{N} have one end:

- Write Γ for $\Gamma_{r}(S, X)$ and \mathfrak{F} for any finite subset of vertices of Γ.
- Let m be the largest element in \mathfrak{F} and choose $k \in \mathbb{N}$ which satisfies $m<k n_{0}$.
- $C=\left\{n: n \geq(k+1) n_{0}\right\}$ is an infinite subset of $\Gamma-\mathfrak{F}$ having a finite complement in \mathbb{N}.
- To prove that Γ has only one end, it suffices to show that C is a subset of the component of $\Gamma-\mathfrak{F}$ which contains $k n_{0}$.

$$
\begin{gathered}
k n_{0} \xrightarrow{\mathrm{n}_{0}}(k+1) n_{0} \xrightarrow{\mathrm{n}_{0}}(k+2) n_{0} \quad \ldots \\
\ldots \xrightarrow{\mathrm{n}_{0}}(q-1) n_{0} \xrightarrow{\mathrm{n}_{0}+\mathrm{r}} q n_{0}+r
\end{gathered}
$$

- Theorem 18

If S is a commutative subsemigroup of a free semigroup, then $\mathcal{E}_{\ell}(S)=\mathcal{E}_{r}(S)=1$.

- Lemma 19

Let F be the free semigroup on the alphabet A and let S be a finitely generated subsemigroup of F with finite set of generators X. Let Γ be the right Cayley graph $\Gamma_{r}(S, X)$. If \mathfrak{F} is a finite subset of S and w is a element of $S-\mathfrak{F}$, write C_{w} for the component of $\Gamma-\mathfrak{F}$ containing w. If the length, $L_{A}(w)$, of w on the alphabet A is minimal among elements of $S-\mathfrak{F}$, then w is a prefix of every vertex in C_{w}.

Non Commutative Subsemigroups and Monoids

- Theorem 20

If S is a finitely generated subsemigroup of a free semigroup and S is not commutative, then $\mathcal{E}_{\ell}(S)=\mathcal{E}_{r}(S)=\infty$.

- The analogous results for submonoids of free monoids follow immediately by adjoining the empty word.

Questions for Further Consideration

- A finitely generated group has 1,2 , or ∞ many ends. What can we say about number of ends of right cancellative semigroups (whose Cayley graphs are locally finite)?
- Subgroups of finite index of f.g. groups have the same number of ends.
- (R. Gray) Do f.g. submonoid with a finite Rees index in a f.g. monoid and that monoid have the same number of ends?
- What can we say about ends for Schtzenberger graphs of f.g. inverse monoids?

References

- A. H. Clifford and G. B. Preston The Algebraic Theory of Semigroups Mathematical Surveys 7 American Mathematical Society, Providence, 1961

Daniel E. Cohen Groups of Cohomological Dimension One, Lecture Notes in Mathematics 245 Springer-Verlag, Berlin-Heidelberg-New York, 1972
E
M. J. Dunwoody The ends of finitely generated groups, J. Alg. 12 (1969), 339-344

Peter M. Higgins Techniques of Semigroup Theory Oxford Science Publications, Oxford University Press, Oxford, 1992

References

目 J.M. Howie An Introduction to Semigroup Theory Academic Press, London, New York, San Francisco, 1976
A. V. Kelarev On undirected Cayley graphs, Austral. J. Combin. 25 (2002), 73-78

围 A. V. Kelarev and C.E. Praeger On transitive Cayley graphs of groups and semigroups, European J. Combin. 24, no.1,(2003), 59-72
A. V. Kelarev and S.J. Quinn A combinatorial property and Cayley graphs of semigroups, Semigroup Forum 66, no.1, (2003), 89-96
D.Kuske and M. Lohrey Logical aspects of Cayley-graphs: the monoid case, Int.J. of Algebra and Comp. 16, no.2, (2006), 307-340

References

Roger C. Lyndon and Paul E. Schupp Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89 Springer-Verlag, Berlin-Heidelberg-New York, 1977

國 Wilhelm Magnus, Abraham Karrass and Donald Solitar Combinatorial Group Theory, Second Revised Edition, Dover Publications, Inc., New York, 1976
囦 Mateescu,A.and Salomaa, A. "Formal Lenguages:an introduction and synopsis", In: Rozenberg,G. and Salomaa,A. (Eds.)Handbook of Formal Lenguages Vol. 1, Springer, New York,(1997), 329-438
Mario Petrich Inverse Semigroups John Wiley and Sons, New York, 1984

References

Rerio Mario and Norman R. Reilly Completely Regular Semigroups Canadian Mathematica Society Series of Monographs and Advanced Texts, John Wiley and Sons, New York, 1999
R Paul E. Schupp Groups and Graphs Math. Intell. 1 (1979), 205-214
P.V. Silva and B. Steinberg, A geometric characterization of automatic monoids, Quart. J. Math 55 (2004), 333-356

围 P.V. Silva and B. Steinberg, Extensions and submonoids of automatic monoids, Theoret. Comput. Sci. 289 (2002), 727-754

References

围 J. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968), 312-334

雷 J. Stallings Group theory and three-dimensional manifolds, Yale Monographs 4 Yale University Press, New Haven, 1971
B. Zelinka, Graphs of semigroups, Casopis.Pest.Mat. 27 (1981), 407-408

