## Ends for Monoids and Semigroups

#### David A. Jackson<sup>1</sup> Vesna Kilibarda<sup>2</sup>

<sup>1</sup>Department of Mathematics Saint Louis University, USA

<sup>2</sup>Department of Mathematics Indiana University Northwest, USA

April 19, 2009

#### Introduction

Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

#### Ends for Finitely Generated Semigroups and Monoids

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

# Main Results

If G is finitely generated infinite group, then the number of ends of G is 1,2 or ∞.

If  ${\bf H}$  is a subgroup of finite index in  ${\bf G}$  then  ${\bf G}$  and  ${\bf H}$  have the same number of ends.

(Cohen [2], Dunwoody[3], Schupp [15], Stallings [18, 19])

For direct products and for many other semidirect products of finitely generated infinite monoids, the right Cayley digraph of the semidirect product has 1 end.

For a finitely generated subsemigroup of a free semigroup the number of ends is  ${\bf 1}$  or  $\infty.$ 

# **Basic Definitions**

- Graph  $\Gamma = (V, E, \iota, \tau, -1)$
- **Digraph**  $\Gamma = (V, E, \iota, \tau)$
- For 𝔅 a subset of V, we write Γ − 𝔅 for the full subgraph of Γ on V − 𝔅.
- Functor from  $\Gamma = (V, E, \iota, \tau)$  to  $\widehat{\Gamma} = (V, E \cup E^{-1}, \iota, \tau, -1)$

Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

## Walks, Paths, Geodesics

- ▶ A (positive) walk  $\omega$  of length n is a sequence  $(e_1, e_2, \ldots, e_n)$ such that  $\tau(e_i) = \iota(e_{i+1})$  for  $1 \le i < n$ . (We often write  $\omega = e_1e_2 \ldots e_n$ )
- A walk is a **path** if all its vertices are distinct.
- The distance, d<sub>Γ</sub>(v<sub>1</sub>, v<sub>2</sub>), between v<sub>1</sub> and v<sub>2</sub> in Γ, is the length of the shortest path in Γ from v<sub>1</sub> to v<sub>2</sub>.
- A (positive) path of minimal length from v<sub>1</sub> to v<sub>2</sub> in Γ is a (di)geodesic in Γ.

## Unbounded Paths and Infinite Components

- A graph Γ has unbounded paths (unbounded geodesics) if for every natural number n there is a path (geodesic) of length n in Γ.
- A graph Γ is connected if there is a path in Γ from any vertex v<sub>1</sub> to any vertex v<sub>2</sub>. We will define a digraph Γ to be connected if Γ is connected.
- A component of a graph or of a digraph Γ is a maximal connected subgraph of Γ.

## Number of Ends of a Graph

- For Γ, a graph (digraph) and 𝔅, a finite set of vertices of Γ, we define for various subscripts x, 𝔅<sub>x</sub>(Γ − 𝔅) a set of "infinite" components of Γ − 𝔅.
- For each subscript x, we will define e<sub>x</sub>(Γ), a number of ends of Γ by

$$\mathrm{e}_{x}(\Gamma) = \sup_{\mathfrak{F}\subseteq V, \,\,\mathfrak{F} \,\,\mathrm{finite}} |\mathfrak{C}_{x}(\Gamma - \mathfrak{F})|.$$

 There are numerous equivalent definitions for the number of ends for a finitely generated group (Cohen [2], Dunwoody[3], Schupp [15], Stallings [18, 19]).

# Variations for Number of Ends

- C<sub>p</sub>(Γ) =
   C : C is a component of Γ having unbounded paths
- C<sub>g</sub>(Γ) =
   C : C is a component of Γ having unbounded geodesics
- C<sub>1</sub>(Γ) =
   C contains a vertex that initiates unbounded geodesics

Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

## Example 1



Figure:  $\Gamma_r$ ,  $\Gamma_a$  and  $\Gamma_s$ 

# Example 1

## Example 1

- ► For  $\Gamma_r$ , we observe that  $e_{+p}(\Gamma_r) = e_{\delta}(\Gamma_r) = 2$ , while  $e_{\overrightarrow{*}}(\Gamma_r) = e_{\overrightarrow{\delta}}(\Gamma_r) = e_{\overleftarrow{\delta}}(\Gamma_r) = e_{\overleftarrow{\delta}}(\Gamma_r) = 1$ .
- ► Since no positive path in  $\Gamma_a$  has length greater than 1,  $e_x(\Gamma_a) = 0$  for every digraph subscript **x**.
- ► Similarly,  $e_{+p}(\Gamma_s) = e_{\delta}(\Gamma_s) = e_{\overleftarrow{s}}(\Gamma_s) = e_{\overleftarrow{\delta}}(\Gamma_s) = \mathbf{1}$ , while  $e_{\overrightarrow{s}}(\Gamma_s) = e_{\overrightarrow{\delta}}(\Gamma_s) = \mathbf{0}$ .

Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

## Graph and Digraph Definitions of Ends



Figure: Some subset inclusions for  $\mathfrak{C}_{\infty}$ 

- Cayley graphs of groups are a fundamental tool in combinatorial group theory (see Lyndon and Schupp [10] and Magnus, Karrass, and Solitar [11]).
- Cayley graphs of groups represent a link between topology, graph theory, and automata theory.
- Combinatorial properties of Cayley graphs of monoids were studied by Zelinka [20] and by Kelarev, Praeger, and Quinn in [6, 7, 8]
- Cayley graphs of automatic monoids were studied by Silva and Steinberg in [16, 17]
- Logical aspects of Cayley graphs of monoids were studied by Kuske and Lohrey in [9]

# Right and Left Cayley Digraphs

- T a semigroup and  $X \subseteq T$  a set of semigroup generators for T
  - ► The **right Cayley digraph** for *T* with respect to *X* is the digraph  $\Gamma_r(T, X) = (V, E, \iota, \tau)$  where V = T,  $E = T \times X = \{(t, x) : t \in T, x \in X\}$ ,  $\iota((t, x)) = t$  and  $\tau((t, x)) = tx$ .

$$t \xrightarrow{x} tx$$

▶ the left Cayley digraph for *T* with respect to *X* is the digraph  $\ell\Gamma(X, T) = (V, E, \iota, \tau)$  where V = T,  $E = X \times T = \{(x, t) : x \in X, t \in T\} \iota((x, t)) = t$  and  $\tau((x, t)) = xt$ .

$$t \xrightarrow{x} xt$$

Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

Right Cayley Digraphs for the Free Monoid F(a, b) and the Free Commutative Monoid  $M = \langle a, b : ab = ba \rangle$ 





Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

Right Cayley Digraph for 
$$\textit{M}=\langle x,t:xt=t,t^2=t
angle$$



Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

Left Cayley Digraph for 
$$M = \langle x, t : xt = t, t^2 = t \rangle$$



Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

# Left and Right Cayley Digraphs for $M = \langle a, b : ba = a \rangle$



Left digraph



Right digraph

Ends for Graphs and Digraphs Cayley Digraphs for Semigroups and Monoids

# Left and Right Cayley Digraphs for Bicyclic Monoid $M = \langle a, b : ab = 1 \rangle$





#### ► Lemma 2

Let X be a finite set of monoid generators for the monoid M and  $\Gamma$  be the right Cayley digraph,  $\Gamma_r(M, X)$ . If  $\mathfrak{F}$  is any finite set of vertices of  $\Gamma$  and **C** is an **infinite component** of  $\Gamma - \mathfrak{F}$ , then there is a **vertex**  $\hat{\mathbf{v}}$  in **C** which **initiates unbounded digeodesics**.

► Corollary 3

$$\mathsf{e}_{\mathsf{x}}(\mathsf{\Gamma}) = \mathsf{e}_{\infty}(\mathsf{\Gamma}) \text{ if } \mathsf{x} \in \{p, g, *, \dagger, +p, \delta, \overrightarrow{*}, \overrightarrow{\delta}\}.$$

#### Lemma 4

For a monoid M and its finite subset  $\mathfrak{F}$ ,  $\Gamma - \mathfrak{F}$  has at most  $1 + |X| |\mathfrak{F}|$  components.

- FACTS:
  - $e_{\infty}(\Gamma) \geq 1$  for infinite monoids.
  - ► Let  $\mathfrak{F}$  and  $\hat{\mathfrak{F}}$  be finite subsets of M with  $\mathfrak{F} \subseteq \hat{\mathfrak{F}}$ . Then  $|\mathfrak{C}_{\infty}(\Gamma \mathfrak{F})| \leq |\mathfrak{C}_{\infty}(\Gamma \hat{\mathfrak{F}})|.$
  - For every natural number *n*, define  $\mathfrak{F}_n$  to be  $\{m \in M : L_X(m) \le n\}$ . Then  $\mathfrak{F}_n$  is finite and  $e_{\infty}(\Gamma) = \lim_{n \to \infty} |\mathfrak{C}_{\infty}(\Gamma \mathfrak{F}_n)|$ .

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## Ends are Independent of the Set of Generators

#### Lemma 5

If X and Y are finite sets of monoid generators for the monoid M, then  $e_{\infty}(\Gamma_r(M, X)) = e_{\infty}(\Gamma_r(M, Y))$  and  $e_{\infty}({}_{\ell}\Gamma(X, M)) = e_{\infty}({}_{\ell}\Gamma(Y, M)).$ 

#### Proof.

- ► It suffices to prove that  $e_{\infty}(\Gamma_r(M, X)) = e_{\infty}(\Gamma_r(M, X \cup Y))$
- ► Reduce to the case that  $e_{\infty}(\Gamma_r(M, X)) = e_{\infty}(\Gamma_r(M, X \cup \{y\}))$ where  $y \in Y$  by using induction on  $|X \cup Y| - |X|$ . For brevity, write  $\Gamma = \Gamma_r(S, X)$  and  $\Gamma' = \Gamma_r(S, X \cup \{y\})$ .
- We consider two cases, when  $e_{\infty}(\Gamma)$  is finite or infinite.
- We first show  $e_{\infty}(\Gamma) \leq e_{\infty}(\Gamma')$  in the finite case.

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

# Continuation of the Proof that Ends are Independent of the Set of Generators

- Second, we exhibit a finite set 𝔅<sub>2</sub> such that Γ' − 𝔅<sub>2</sub> has e<sub>∞</sub>(Γ) infinite components, proving the equality in the finite case.
- Last, when e<sub>∞</sub>(Γ) is infinite, we show that for any natural number n, there is a finite subset ℑ of M such that Γ' − ℑ has at least n infinite components.

### Definition 6

For a finitely generated semigroup S, we define  $\mathcal{E}_r(S)$  and  $\mathcal{E}_{\ell}(S)$  by  $\mathcal{E}_r(S) = e_{\infty}(\Gamma_r(S, X))$  and  $\mathcal{E}_{\ell}(S) = e_{\infty}(\ell \Gamma(S, X))$  for any finite set X of semigroup generators for S.

- When M is a finitely generated monoid, the values for E<sub>r</sub>(M) and E<sub>ℓ</sub>(M) do not change if we consider M as a semigroup rather than as a monoid.
- It is usual to consider a Cayley graph rather than a Cayley digraph for a group. Typically, these are the right Cayley graphs (isomorphic to the left Cayley graphs)which are always locally finite.
- If a group is considered as a monoid , then its number of ends (considered as a group) is equal to both of the monoid values *E<sub>r</sub>(G)* and *E<sub>ℓ</sub>(G)*.

## Definition 7

For any semigroup  $(S, \cdot)$  the dual semigroup  $S^{op} = (S, *)$  has the same set of elements as S and has multiplication \* defined by  $s_1 * s_2 = s_2 \cdot s_1$ .

## Dual Semigroup Proposition

If the semigroup S is isomorphic to  $S^{op}$ , then  $\mathcal{E}_r(S) = \mathcal{E}_{\ell}(S)$ .

### ► Corollary 8

If T is a finitely generated **inverse** semigroup (or a finitely generated inverse monoid), then  $\mathcal{E}_r(T) = \mathcal{E}_\ell(T)$ .

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## Special Semidirect Product of Monoids

- $M = \langle X : R_2 \rangle$  and  $T = \langle A : R_1 \rangle$  are monoids
- ▶ Define θ<sub>T</sub>∈ End(T) as θ<sub>T</sub>(t) = 1<sub>T</sub>, t ∈ T and ι<sub>T</sub> as the identity automorphism of T
- $\Phi_0: M \to \text{End}(T)$  takes  $1_M$  to  $\iota_T$  and every other element of M to  $\theta_T$ .

$$\blacktriangleright \hat{M} = T \rtimes_{\Phi_0} M = \langle A \cup X : R_1 \cup R_2 \cup \{ (xa, x) : a \in A, x \in X \} \rangle$$

#### Layer Lemma

Let *T* be a finite monoid and *M* a finitely generated monoid. Assume that  $\mathbf{M} = \mathbf{S}^1$  for some semigroup *S*. Then  $\mathcal{E}_r(T \rtimes_{\Phi_0} M) = |T|\mathcal{E}_r(M)$  and  $\mathcal{E}_\ell(T \rtimes_{\Phi_0} M) = \mathcal{E}_\ell(M)$ .

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

Number of Ends for  $A_n = \langle x, t : xt = t, t^n = t^{n-1} \rangle = T \rtimes_{\Phi_0} M$ 

#### Example 9

- ► *T* is monogenic monoid with presentation  $T = \langle t : t^n = t^{n-1} \rangle$
- ► M = S<sup>1</sup> is infinite monogenic monoid whose left and right Cayley digraphs have 1 end
- ▶ By Layer Lemma,  $\mathcal{E}_r(A_n) = |T|\mathcal{E}_r(M) = n \cdot 1 = \mathbf{n}$  and  $\mathcal{E}_\ell(A_n) = \mathcal{E}_\ell(M) = \mathbf{1}$

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

# Right Cayley Digraph for $A_2 = \langle x, t : xt = t, t^2 = t \rangle$ with **2** Ends



Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

# Left Cayley Digraph for $A_2 = \langle x, t : xt = t, t^2 = t \rangle$ with $\mathbf{1}$ End



Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

Number of Ends for 
$$J_{n,m}=\,T
times_{\Phi_0}A^{\mathrm{op}}_n$$

#### Example 10

- T is monogenic monoid of order m
- ► A<sub>n</sub><sup>op</sup> = S<sup>1</sup> is infinite monogenic monoid whose left Cayley graph has **n** ends and right Cayley digraphs has **1** end

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## Special Semidirect Products

- Write Monic(M) for the submonoid of End(M) consisting of one-to-one endomorphisms.
- ▶ Write End<sub>r</sub>(M) for End(M) when functions act on their arguments from right and End<sub>ℓ</sub>(M) when functions act on their arguments from left.
- If Φ : A → End<sub>r</sub>(B) is a monoid homomorphism, define the monoid semi-direct product A κ<sub>Φ</sub> B to have elements {(a, b) : a ∈ A, b ∈ B} and multiplication (a<sub>1</sub>, b<sub>1</sub>)(a<sub>2</sub>, b<sub>2</sub>) = (a<sub>1</sub>a<sub>2</sub>, b<sub>1</sub><sup>a<sub>2</sub></sup>b<sub>2</sub>).
- Similarly, if Φ : A → End<sub>ℓ</sub>(B) is a monoid homomorphism, we define the monoid semi-direct product B ⋊<sub>Φ</sub> A to have elements {(b, a) : b ∈ B, a ∈ A} and multiplication (b<sub>1</sub>, a<sub>1</sub>)(b<sub>2</sub>, a<sub>2</sub>) = ((b<sub>1</sub>)(<sup>a<sub>1</sub></sup>b<sub>2</sub>), a<sub>1</sub>a<sub>2</sub>).

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## Special Semidirect Products

#### Theorem 11

Suppose that  $M_i$  is a finitely generated infinite monoid for i = 1, 2. If  $\Phi : M_1 \to \text{Monic}(M_2)$  is a monoid homomorphism, then  $\mathcal{E}_r(M_1 \ltimes_{\Phi} M_2) = \mathcal{E}_\ell(M_2 \rtimes_{\Phi} M_1) = 1.$ 

#### ► Corollary 12

Suppose that  $G_i$  is a finitely generated infinite group for i = 1, 2. If  $\Phi : G_1 \rightarrow Aut(G_2)$  is a group automorphism, then the group semidirect product  $G_2 \rtimes_{\Phi} G_1$  has one end.

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## Special Semidirect Products

#### ► Corollary 13

Suppose, for i = 1, 2, that  $M_i$  is an infinite monoid with a finite set of monoid generators  $X_i$ . Let  $M = M_1 \times M_2$  be the monoid direct product. Then  $\mathcal{E}_r(M) = \mathcal{E}_\ell(M) = 1$ .

#### ► Proof.

The direct product is a special case of Theorem 11 where  $\Phi$  takes each element of  $M_1$  to the identity automorphism of  $M_2$ .

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

$$M=\langle \mathsf{a},\mathsf{b}:\mathsf{b}\mathsf{a}=\mathsf{a}
angle=B
times_{\Phi_0}A$$

#### Example 14

- In the previous theorem, the hypothesis that Φ has its range in Monic(M<sub>2</sub>) rather than just in End(M<sub>2</sub>) is necessary.
- ▶  $\mathcal{E}_{\ell}(B \rtimes_{\Phi_0} A) = \mathcal{E}_{\ell}(A)$  of the Layer Lemma need not hold if *B* is an **infinite** monoid.
- Let A = ⟨a⟩ and B = ⟨b⟩ be free monogenic monoids and M = A ⊨ Φ₀ B.
- ► Here  $a\Phi_0 = \theta_B$  where  $b^m \theta_B = 1_B$  for every non-negative integer *m*, hence  $\theta_B$  is **not one-to-one**.

$$\mathcal{E}_r(A\ltimes_{\Phi_0}B) = \mathcal{E}_\ell(A\ltimes_{\Phi_0}B) = \mathcal{E}_r(B\rtimes_{\Phi_0}A) = \mathcal{E}_\ell(B\rtimes_{\Phi_0}A) = \infty.$$

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## Left and Right Cayley Digraphs for $M = \langle a, b : ba = a \rangle$



Left digraph



Right digraph

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## 0-direct Unions

▶ Let  $\Lambda$  be an index set and  $(S_{\lambda}, *_{\lambda})$  be a semigroup for each  $\lambda \in \Lambda$ . Assume that  $S_{\lambda_1} \cap S_{\lambda_2} = \emptyset$  if  $\lambda_1 \neq \lambda_2$  and that 0 is a new element not in  $\cup S_{\lambda}$ . Define  $\lor S_{\lambda}$  to be  $\{0\} \cup (\bigcup_{\lambda \in \Lambda} S_{\lambda})$  and define a multiplication \* on  $\lor S_{\lambda}$  by

$$s*t = \begin{cases} s*_{\lambda} t & \text{ if there exists } \lambda \in \Lambda \text{ such that } s \in S_{\lambda} \text{ and } t \in S_{\lambda} \\ 0 & \text{ otherwise} \end{cases}$$

For any  $\lambda$ , define  $S_{\lambda}^{0}$  to be the semigroup having elements  $\{0\} \cup S_{\lambda}$  with the multiplication  $*_{\lambda}$  extended by setting  $s *_{\lambda} 0 = 0 *_{\lambda} s = 0 *_{\lambda} 0 = 0$  for all  $s \in S_{\lambda}$ . Then  $\lor S_{\lambda}$  is the 0-direct union of the semigroups  $S_{\lambda}^{0}$ . See Clifford and Preston [1, Volume II, page 13], Howie, [5, page 71] or Higgins, [4, page 26].

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

# 0-direct Unions

#### ▶ Lemma 15

Suppose that  $\Lambda$  is a finite set and that  $\{S_{\lambda}\}_{\lambda \in \Lambda}$  is a set of pairwise disjoint, finitely generated semigroups  $S_{\lambda}$ . Then  $\vee S_{\lambda}$  is finitely generated,  $\mathcal{E}_{\ell}(\vee S_{\lambda}) = \sum_{\lambda \in \Lambda} \mathcal{E}_{\ell}(S_{\lambda})$  and  $\mathcal{E}_{r}(\vee S_{\lambda}) = \sum_{\lambda \in \Lambda} \mathcal{E}_{r}(S_{\lambda})$ .

#### ► Example 16

For an arbitrary natural number n, let  $\Lambda$  be an index set with  $|\Lambda| = n$  and for each  $\lambda \in \Lambda$ , let  $S_{\lambda}$  be a finitely generated abelian group with  $\mathcal{E}_{\ell}(S_{\Lambda}) = \mathcal{E}_{r}(S_{\Lambda}) = 1$ . For example, take  $S_{\lambda}$  to be the free abelian group of rank  $r_{\lambda} \ge 2$ . Let  $S = \vee S_{\lambda}$ . Then S is a finitely generated, completely regular, commutative inverse semigroup with  $\mathcal{E}_{r}(S) = \mathcal{E}_{\ell}(S) = n$ .

## Ends for the additive semigroup $\ensuremath{\mathbb{N}}$ of natural numbers

The group versions of the following theorem in Lyndon and Schupp [10, Proposition I.2.17] and Magnus, Karrass, and Solitar [11, Exercise 1.4.6] are easily modified to obtain the semigroup version.

## Lyndon's Theorem

(Mateescu and Salomaa[12, Theorem 2.2]) Suppose that F is the free semigroup on the alphabet A and that  $u, v \in F$ . If uv = vu, then there is an element  $w \in F$  and natural numbers m, n such that  $u = w^m$  and  $v = w^n$ .

#### ► Lemma 17

If S is any subsemigroup of the additive semigroup  $\mathbb{N}$  of natural numbers, then  $\mathcal{E}_{\ell}(S) = \mathcal{E}_r(S) = 1$ .

# Proof that subsemigroups of additive semigroup $\ensuremath{\mathbb{N}}$ have one end:

- ▶ Let *S* be a subsemigroup of the additive semigroup  $\mathbb{N}$ . Since *S* is commutative, from Dual Semigroup Proposition we must have  $\mathcal{E}_{\ell}(S) = \mathcal{E}_{r}(S)$ .
- From elementary number theory we know that S contains all but finitely many natural numbers.
- ▶ Write  $n_0 1$  for the greatest natural number that is not in *S*. Then  $S = X_0 \cup \{n \in \mathbb{N} : n \ge n_0\}$  for some finite set  $X_0 \subseteq \mathbb{N}$ .

► S is generated by the finite set 
$$X = X_0 \cup \{n \in \mathbb{N} : n_0 \le n < 2n_0\}.$$

►

# Continuation of the proof that subsemigroups of additive semigroup $\mathbb N$ have one end:

- Write Γ for Γ<sub>r</sub>(S, X) and 𝔅 for any finite subset of vertices of Γ.
- ▶ Let *m* be the largest element in  $\mathfrak{F}$  and choose  $k \in \mathbb{N}$  which satisfies  $m < kn_0$ .
- $C = \{n : n \ge (k+1)n_0\}$  is an infinite subset of  $\Gamma \mathfrak{F}$  having a finite complement in  $\mathbb{N}$ .
- ► To prove that  $\Gamma$  has only one end, it suffices to show that *C* is a subset of the component of  $\Gamma \mathfrak{F}$  which contains  $kn_0$ .

$$kn_0 \xrightarrow{n_0} (k+1)n_0 \xrightarrow{n_0} (k+2)n_0 \dots$$
  
 $\dots \xrightarrow{n_0} (q-1)n_0 \xrightarrow{n_0+r} qn_0+r$ 

▶ Theorem 18 If *S* is a commutative subsemigroup of a free semigroup, then  $\mathcal{E}_{\ell}(S) = \mathcal{E}_{r}(S) = 1.$ 

#### ▶ Lemma 19

Let F be the free semigroup on the alphabet A and let S be a finitely generated subsemigroup of F with finite set of generators X. Let  $\Gamma$  be the right Cayley graph  $\Gamma_r(S, X)$ . If  $\mathfrak{F}$  is a finite subset of S and w is a element of  $S - \mathfrak{F}$ , write  $C_w$  for the component of  $\Gamma - \mathfrak{F}$  containing w. If the length,  $L_A(w)$ , of w on the alphabet A is minimal among elements of  $S - \mathfrak{F}$ , then w is a prefix of every vertex in  $C_w$ .

## Non Commutative Subsemigroups and Monoids

## ► Theorem 20

If S is a finitely generated subsemigroup of a free semigroup and S is not commutative, then  $\mathcal{E}_{\ell}(S) = \mathcal{E}_{r}(S) = \infty$ .

The analogous results for submonoids of free monoids follow immediately by adjoining the empty word.

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

## Questions for Further Consideration

- ► A finitely generated group has 1, 2, or ∞ many ends. What can we say about number of ends of right cancellative semigroups (whose Cayley graphs are locally finite)?
- Subgroups of finite index of f.g. groups have the same number of ends.
- (R. Gray) Do f.g. submonoid with a finite Rees index in a f.g. monoid and that monoid have the same number of ends?
- What can we say about ends for Schtzenberger graphs of f.g. inverse monoids?

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

- A. H. Clifford and G. B. Preston *The Algebraic Theory of Semigroups* Mathematical Surveys **7** American Mathematical Society, Providence, 1961
- Daniel E. Cohen Groups of Cohomological Dimension One, Lecture Notes in Mathematics 245 Springer-Verlag, Berlin-Heidelberg-New York, 1972
- M. J. Dunwoody *The ends of finitely generated groups*, J. Alg. **12** (1969), 339–344
- Peter M. Higgins Techniques of Semigroup Theory Oxford Science Publications, Oxford University Press, Oxford, 1992

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

- J.M. Howie *An Introduction to Semigroup Theory* Academic Press, London, New York, San Francisco, 1976
- A. V. Kelarev *On undirected Cayley graphs*, Austral. J. Combin. **25** (2002), 73–78
- A. V. Kelarev and C.E. Praeger On transitive Cayley graphs of groups and semigroups, European J. Combin. 24, no.1,(2003), 59–72
- A. V. Kelarev and S.J. Quinn *A combinatorial property and Cayley graphs of semigroups*, Semigroup Forum **66**, no.1, (2003), 89–96
- D.Kuske and M. Lohrey Logical aspects of Cayley-graphs: the monoid case, Int.J. of Algebra and Comp. 16, no.2, (2006), 307–340

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

- Roger C. Lyndon and Paul E. Schupp Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89 Springer-Verlag, Berlin-Heidelberg-New York, 1977
- Wilhelm Magnus, Abraham Karrass and Donald Solitar Combinatorial Group Theory, Second Revised Edition, Dover Publications, Inc., New York, 1976
- Mateescu, A. and Salomaa, A. "Formal Lenguages: an introduction and synopsis", In: Rozenberg, G. and Salomaa, A. (Eds.) Handbook of Formal Lenguages Vol. 1, Springer, New York, (1997), 329–438
- Mario Petrich *Inverse Semigroups* John Wiley and Sons, New York, 1984

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

- Mario Petrich and Norman R. Reilly Completely Regular Semigroups Canadian Mathematica Society Series of Monographs and Advanced Texts, John Wiley and Sons, New York, 1999
- Paul E. Schupp *Groups and Graphs* Math. Intell. **1** (1979), 205–214
- P.V. Silva and B. Steinberg, A geometric characterization of automatic monoids, Quart. J. Math 55 (2004), 333–356
- P.V. Silva and B. Steinberg, Extensions and submonoids of automatic monoids, Theoret. Comput. Sci. 289 (2002), 727–754

Ends for Semidirect Products and O-Direct Unions Subsemigroups of Free Semigroups References

- J. Stallings, *On torsion-free groups with infinitely many ends*, Ann. of Math. **88** (1968), 312–334
- J. Stallings *Group theory and three-dimensional manifolds*, Yale Monographs **4** Yale University Press, New Haven, 1971
- B. Zelinka, *Graphs of semigroups*, Casopis.Pest.Mat. **27** (1981), 407–408