Free Adequate Semigroups

Mark Kambites

School of Mathematics, University of Manchester

NBSAN St Andrews, 17 April 2009

Semigroup Theory

Philosophy

- Semigroups are partly algebraic and partly combinatorial.
- Break them up into an algebraic bit (somebody else's problem)
- ... and a combinatorial bit (somebody else's problem)

Example (Krohn-Rhodes Theory)

- Algebraic part: groups
- Combinatorial part: aperiodic (group-free) semigroups
- Interplay: wreath products

Example ("Rees Theory")

- Algebraic part: groups
- Combinatorial part: eggboxes
- Interplay: the Rees matrix construction

Inverse Semigroups

Definition

A semigroup S is **inverse** if the idempotents commute and for every $x \in S$ there is an element y with xyx = x;

Idea

- The existence of inverses forces a strong relationship between general elements and idempotents.
- If idempotents commute then their structure is (i) independent of the rest of the semigroup and (ii) essentially combinatorial rather than algebraic.

Philosophy

- local structure is group-like (somebody else's problem);
- global structure is semilattice-like (somebody else's problem);
- interplay is (sometimes) manageable.

Rule

To understand a semigroup, we should seek:

- a local invertible structure;
- a global combinatorial structure;
- a sufficient understanding of the relationship between them.

Exception

Cancellative monoids don't really decompose like this, but they are still relatively easy to understand.

Idea (Fountain)

Replace "locally invertible" with "locally cancellative-like".

Question

What on earth does that mean?

Adequate Semigroups

Definition

A semigroup S is **left adequate** if idempotents commute and for each $a \in S$ there is an idempotent $e \in S$ such that $xa = ya \iff xe = ye$.

Definition

A semigroup S is **right adequate** if idempotents commute and for each $a \in S$ there is an idempotent $e \in S$ such that $ax = ay \iff ex = ey$.

Definition

A semigroup is **adequate** if it is both left and right adequate.

Philosophy

- local structure is "cancellative-like";
- global structure is semilattice-like;
- interplay is (occasionally) manageable.

The + and * Operations

Proposition

Let S be a left adequate semigroup. For each $a \in S$ there is a **unique** idempotent a^+ such that xa = ya if and only if $xa^+ = ya^+$.

Proposition

Let S be a right adequate semigroup. For each $a \in S$ there is a **unique** idempotent a^* such that ax = ay if and only if $a^*x = a^*y$.

Remark

The operations $x \mapsto x^+$ and $x \mapsto x^*$ are so fundamental that we consider left/right/two-sided adequate semigroups as algebras of signature (2,1) or (2,1,1).

Free Objects

Let F be an algebra in a class $\mathcal C$ of algebras.

Definition

F is **free** in $\mathcal C$ if there is a subset $\Sigma\subseteq F$ such that every function from Σ to an algebra $M\in\mathcal C$ extends uniquely to a morphism from F to M.

Definition

The cardinality of Σ (which determines F) is a (usually the) **rank** of F.

Example

- Free semigroups
- Free groups
- Free bands
- Free inverse semigroups
- . . .

Free Adequate Semigroups

Fact

The class of left adequate semigroups forms a quasivariety of (2, 1)-algebras defined by:

- (xy)z = x(yz) (associativity);
- $e^2 = e, f^2 = f \implies ef = fe$ (idempotents commute);
- $x^+ = (x^+)^+$;
- $x^+x^+ = x^+$:
- $xa = ya \implies xa^+ = ya^+$;
- \bullet $xa^+ = ya^+ \implies xa = ya.$

Similarly for right adequate and adequate semigroups.

Corollary

There is a free left/right/two-sided adequate semigroup of every rank.

Corollary

There is a free left/right/two-sided adequate semigroup of every rank.

Question

What is it?

Back to Inverse Semigroups

For the free inverse semigroup, we have the Munn representation. This relies heavily on the type A identities

$$ae = (ae)^+ a$$
 and $ea = a(ea)^*$

and applies in other contexts where these hold.

Question

What happens without these identities?

Corollary

There is a free left/right/two-sided adequate semigroup of every rank.

Question

What is it?

The Story So Far

Branco, Gomes and Gould have recently studied free left and right adequate semigroups from a structural perspective, as part of their theory of **proper** adequate semigroups.

Our Aim

A **geometric approach** (like Munn's) for the both the one-sided and two-sided cases.

Let Σ be a set (e.g. an alphabet).

Definition

A Σ -tree is a directed tree with

- at least one vertex and edge
- ullet each edge labelled by an element of Σ ;
- a distinguished start vertex;
- a distinguished end vertex;
- an undirected path between every pair of vertices;
- a (perhaps empty) directed path from the start to the end.

Definition

A Σ -tree is called **idempotent** if its start and end vertices coincide.

Definition

A base tree is a Σ -tree with a single edge and with distinct start and end vertices.

Morphisms

Definition

A **morphism** $\sigma: X \to Y$ of Σ -trees is a map which

- takes edges to edges;
- takes vertices to vertices;
- preserves incidence;
- preserves edge labels;
- takes the start vertex to the start vertex;
- takes the end vertex to the end vertex.

Definition

 $UT(\Sigma)$ is the set of **isomorphism types** of Σ -trees.

Convention

We identify the isomorphism type of a base tree with the label of its edge, so $\Sigma \subset UT(\Sigma)$.

Algebra on Trees

Definition

Let $X, Y \in UT(\Sigma)$. Then

- X × Y is obtained by glueing the end vertex of X to the start vertex of Y.
- $X^{(+)}$ is obtained by moving the end vertex of X to the start vertex.
- $X^{(*)}$ is obtained by moving the start vertex of X to the end vertex.

No folding! (Yet.)

Fact

 $UT(\Sigma)$ forms a semigroup under \times .

Warning

Idempotent trees are not idempotent! (Yet.)

Retracts

Definition

A **retract** of a Σ -tree is an idempotent morphism from X to X.

Definition

A Σ -tree is called **pruned** if it admits no (non-identity) retracts.

Exercise

Let X be a Σ -tree. Then there is a unique (up to isomorphism) Σ -tree which is the image of a retract of X.

Definition

The (isomorphism type of the) unique pruned image of a retract of X is denoted \overline{X} .

Algebra on Pruned Trees

Definition

 $T(\Sigma)$ is the set of isomorphism types of **pruned** Σ -trees.

Definition

We define operations on $T(\Sigma)$ by

- $XY = \overline{X \times Y}$;
- $X^+ = \overline{X^{(+)}}$;
- $X^* = \overline{X^{(*)}}$;

for all $X, Y \in T(\Sigma)$.

Theorem

The map $X \mapsto \overline{X}$ is a surjective (2,1,1)-morphism from $UT(\Sigma)$ to $T(\Sigma)$.

The Free Adequate Semigroup Revisited

Theorem

 $T(\Sigma)$ is the free adequate semigroup on Σ .

Left adequate semigroups

Definition

A Σ -tree X is **left adequate** if every edge is orientated away from the start vertex (or equivalently, if there is a path from the start vertex to every vertex).

Definition

 $LT(\Sigma)$ with pruned operations is the set of isomorphism types of pruned left adequate Σ -trees.

Theorem

 $LT(\Sigma)$ is the free left adequate semigroup on Σ .

Corollary

Any (2,1)-identity which holds in every adequate semigroup also holds every left/right adequate semigroup.

Monoids

Remark

If we admit the **trivial** Σ -**tree** with one vertex and no edges, then we obtain the free left/right/two-sided adequate **monoid**.

Some Elementary Corollaries

Corollary

The word problem for a finitely generated free left/right/two-sided adequate semigroup is decidable

Question

What is its complexity?

Corollary

One can decide effectively whether a given identity holds in all left/right/two-sided adequate semigroups.

Corollary

No non-trivial free left/right/two-sided adequate semigroup is finitely generated as a semigroup.

Corollary

Every free adequate left/right/two-sided semigroup is \mathcal{J} -trivial (as a semigroup).

Inverse Semigroups as Adequate Semigroups

Remark

We can develop an analogous theory in which we

- replace retracts with morphisms; and
- don't require a directed path from the start to the end.

This gives the Munn representation of the free **inverse** semigroup. (Isomorphism types of morphism-free Σ -trees are in 1-1 correspondence with Munn trees.)

Fact

- There is a natural morphism from the free adequate semigroup to the free inverse semigroup, taking x^+ to xx^{-1} and x^* to $x^{-1}x$.
- This can be interpreted as a folding operation on trees.
- Likewise the morphism from the free adequate semigroup **onto** the free ample semigroup.

Residual Finiteness Properties

Definition

A function $f: S \to T$ separates $X \subseteq S$ if $x \neq y \implies f(x) \neq f(y)$ for all $x, y \in X$.

Definition

An algebra is **[fully] residually finite** if every pair [finite set] of elements is separated by a morphism to a finite algebra.

Remark

Let F be a free algebra of rank \aleph_0 in a class $\mathcal C$ of algebras.

- Pairs of elements in F which cannot be separated in finite quotients correspond to identities which are satisfied in all finite algebras in C, but **not** in all infinite algebras.
- So F is residually finite \iff every identity satisfied by all finite algebras in C is also satisfied by all infinite C-algebras.

Residual Finiteness Properties

Theorem

Free left/right adequate semigroups are (fully) residually finite as adequate (2,1)-algebras.

Theorem

Every finite subset of a free left/right adequate semigroup is separated by a Rees quotient ("fully Rees-residually finite").

Fact

Finite subsets of free adequate semigroups are **not** separable by Rees quotients. (There are elements which do **not** lie outside a cofinite ideal.)

Question

Are free adequate semigroups residually finite?